首页 > 作文 > 初中生作文 > 初二作文

设计机器人的英语作文

admin 初二作文 2020-04-23 03:20:18 机器人对偶

第一篇:《机器人的英语作文》

机器人的英语作文

英语作文题目要求

将来机器人将会给我们生活带来巨大的变化,未来人们的生活钟的很多事情将有机器人完成,如做一些家务、购物、做饭以及不出家门就可以看医生等。 请根据 The Life in the Future 写一篇文章,80词左右,不用太多记住要初二读得懂的

Have you ever thought about the life with robots in the next 50 or 100 years?

We can imagine that all the housework, including washing dishes and cleaning the windows and many kinds of things like this, will be done easily and automatically. It is just because we have robots. As long as they are at home, we will not need to go shopping and cooking by ourselves any more.If any family member get ill, we can still stay in our apartment. Because the robot is the doctor.

Yes, robots may be everything except humans in the future.

第二篇:《机器人的英语作文》

机器人的英语作文

英语作文题目要求

将来机器人将会给我们生活带来巨大的变化,未来人们的生活钟的很多事情将有机器人完成,如做一些家务、购物、做饭以及不出家门就可以看医生等。 请根据 The Life in the Future 写一篇文章,80词左右,不用太多记住要初二读得懂的

Have you ever thought about the life with robots in the next 50 or 100 years?

We can imagine that all the housework, including washing dishes and cleaning the windows and many kinds of things like this, will be done easily and automatically. It is just because we have robots. As long as they are at home, we will not need to go shopping and cooking by ourselves any more.If any family member get ill, we can still stay in our apartment. Because the robot is the doctor.

Yes, robots may be everything except humans in the future.

第三篇:《关于机器人的英语作文》

As the development of the science and technology, more and more people begin to use robot in life to serve for them.Using robots will bring you much convenience. They can do housework for you,such as wash cloths,clean rooms and so on. Therefore,you will have more spare time to do everything you like.However, each coin has two sides. A robot may cause many troubles to you.It may catch virus,may put foods into washing machine, may throw shirts to dustbin. Of course, the direct aftermath of the robot is to be sent back to robot shops. 随着科学技术的发展,越来越多的人开始使用机器人在生活中为他们服务。使用机器人将会给你带来很多方便。他们可以为你做家务,如洗衣服,打扫房间等等。因此,你将会有更多的空闲时间去做你喜欢的一切。然而,每个硬币都有两面。机器人可能会引起很多麻烦。它可能赶上病毒,可能会把食物放进洗衣机,会把衬衫垃圾箱。当然,机器人的直接后果是被送回机器人商店。

How to take care of the disabled people?

Disabled people are normal people, except that they can not see as much as we can, or they can not walk as fast as we can.

Since they can not see as much, or they can not walk as fast, they need our help.

We can immediately do a long list of ways in which we can help them, for instance,

Each student finds some one to help, in the neighborhood or the community. You can help them to cross the road. You can help pushing their wheel chairs. l Set up kind of organization. Collect some money. Use this money to help them, to buy them daily necessities, to help their children finish school.

As they are disabled, it is more difficult for them to earn as much as normal people do. That’s why they usually need help in physical things.

As they are disabled, they feel lonely. They think they are not as good as normal people. They easily become lonely, sad, disappointed. They easily lose hope of life. They need help more in spiritual things. They need people to chat with. They need people to encourage them to continue their lives. They need people to get rid of prejudices over them.

Now, I would suggest, do whatever we can to help them. We can donate our pocket money. We can walk up to help the disabled to cross the street. We can make friends with the disabled by visiting them, by calling them, by emailing them, by whatever means. However, don’t always think we are better than the disabled. As normal people, we always make normal mistakes. We take it for granted that we can see things while the blind can not. If you know the story about Helen Keller, you will understand why you are wrong. The blind can not see with their bare eyes, but they can see better with their ears. They can see better with their hands.

So, help the disabled while you treat them like normal people. And they are normal people!如何照顾残疾人?

残疾人是正常的人,除了他们看不到尽可能多,或者他们不能走那么快。

因为他们看不见,或者他们不能走那么快,他们需要我们的帮助。

我们可以马上做一长串的方式我们可以帮助他们,例如,

每个学生找到一些人帮助,在社区或社区。你可以帮助他们过马路。你能帮助推进他们的车轮椅子。 l建立的组织。收集一些钱。用这些钱来帮助他们,给他们买生活必需品,帮助他们的孩子完成学业。 被禁用,它是更难获得和正常人一样。这就是为什么它们通常需要帮助在物理的东西。

当他们被禁用时,他们感到孤独。他们认为他们是不如正常人。他们很容易变得孤独,伤心,失望。他们很容易失去生活的希望。他们需要帮助更多精神上的东西。他们需要人聊天。他们需要人鼓励他们继续他们的生活。他们需要人们摆脱偏见。

现在,我建议,尽我们所能帮助他们。我们可以捐出我们的零花钱。我们可以走到帮助残疾人过马路。我们可以通过访问和残疾人交朋友,通过调用它们,通过电子邮件,不管用什么办法。

然而,不要总是认为我们比残疾人。作为普通人,我们总是让正常的错误。我们理所当然地认为,我们可以看到的事情,不能视而不见。如果你知道海伦·凯勒的故事,你就会明白为什么你错了。盲人可以用自己的眼睛看不见,但他们可以看到更好的耳朵。他们可以看到更好的用双手。

所以,帮助残疾人当你对待他们像正常人一样。他们是正常的人!

第四篇:《机械毕业设计英文外文翻译46并联位移机器人的设计》

附录:

并联位移机器人的设计

Jacques M.HERVE

ECELE CENTRALE PARIS

92295 CHATENAY MALABRY CEDEX

FRANCE

摘要:本文目的是对偶具有人性化机器人的应用做一个完全的介绍,并将着重讨论并行机器人特别是那些能够进行空间平移的机器人。在许多工业的应用过程中这种机器人被证明其末端执行器在空间上的定位是没必要的。这个方法的优点是我们能系统地导出能预期得到位移子群的所有运动学链。因此,我们调查了机器人的整个家族。T-STAR机器人现在就是一台工作装置。而

H-ROBOT,PRISM-ROBOT是新的可能的机器人。这些机器人能满足现代生产快节奏工作中价格低以及符合挑选的工作环境,如选料、安排、包装、装配等发日益增长的需求。

关键词:运动学,并行机器人{设计机器人的英语作文}.

引言

群论可以运用于一系列位移当中。根据这个理论,如果我们能够证明群{D}包含所有的可能的位移,那么{D}就具有群结构。刚体的最显著运动是由群{D}表现出来的。这方法导致机械装置的分类

[1]。建立这样的一个分类的主要的步骤是将位移群的所有子群导出。这能通过检验所有具有旋转和平移特性的[2]产品直接推理出。然而,一个更有效的方法存在于假设群论[3],[4]中。假设群论是在取决于许多有限实参数的全纯映射的基础上定义的。位移群{D}是六维假设群的一个特例。

假设理论

在假设群论的框架内,我们将用于补偿李代数的微元变换与通过其前面幂运算得到的有限运算结合起来。连续群通过与群微元变换有关的微分幂运算描述出来。

另外,群体特性通过微分运算及其逆运算所得到的李代数的代数结构而得到了解释。让我们回忆一下李代数主要的定义公理:一个李代数是一个具有封闭乘积的反对偶称双线性的矢量空间。众所周知 [5],螺旋速度场是在给定点N的条件下通过运算得到的一个六维的矢量空间。由下面[3]中步骤表明,我们能得完整的欧几里得位移{D}子群列表(见大纲表1)。该列表是通过首先定义一个与速度场有关的微分运算符得到的。然后,通过幂运算,得到了李代数有限位移的表达式。此表达式相当于仿射的直接归一正交变换。螺旋速度场的子李代数是对偶位移子群组的直接描述。

{X (w)}子群{设计机器人的英语作文}.

为了利用平行机理得到空间平移,我们需要找到所有位移子群的交集——空间平移子群{T}。我们考虑的子群交集将严格的包含于两个“平行”子群内。此类别的最重要的情况是2个{X (w)} 子群和2个不同矢量方向w和w’的平行关系。这很容易证明:

{X(w)} {X(w’)}={T},w≠w’

子群{X (w)}在机制设计起一个很重要的作用。该子群由带有旋转运动的空间平移组成,其旋转主轴方向与所给定的矢量w的方向始终平行。{X(w)}机械联系的实际实施是通过子群{X(w)}代表的

系列运动学对偶中的命令实现的。实际上棱柱对偶和旋转对偶P,R,H都用于构造机器人(圆柱体对偶C以紧凑的方式结合棱柱对偶和旋转对偶)。产生的这些运动学对偶的所有可能组合由子群组{X (w)}在[6]中给出。

同时它们必须连续的满足两种几何情况:旋转轴与螺旋轴要与给定的矢量w平行;不是被动运动。

{X{w}}子群的位移运算符,在M点的作用是:

M → N + au + bv + cw +exp(hw^) N M

^是矢量乘积标志。

点N和矢量u,v,w组成了空间的正交标架的基准。a, b, c, h为具有四维空间的子群的四个参数。

空间平移的并联机器人

当两子群组{X(w)} 和{X(w’)},w≠w’,满足w≠w’,但矢量平行时,在移动平台和固定马达之间,其机械生成元就足以能产生空间平移。三个子群组{X (w)},{X(w’)},{X(w’’)},w≠w’时其生成元同样也能产生空间平移。P,R或H的任何系列组成群组{X (w)}生成元的对偶的空间平移都能被实现。此外,这3种机械生成元可以是不同或一样但都取决于所需的运动学结果。这种组合范围很广,使得整个能进行空间平移的机器人家族成员得到了增加。最有趣的是建筑的模拟能容易地是完成,机器手的选择也能适应委员的需要。Clavel的Delta机器人属于这个家族,因为它基于相同的运动学原理[7]。

并行操作机器人Y-STAR

STAR [16] 由3个能产生{X (u)}, {X (u’)}, {X(u’’)} (fig 1)子群组的协作操作臂组成。3只机械臂是相同且每只都能通过一系列的RHPaR生成一个子群{X (u)},其中Pa代表循环平移协作,此平移协作由一块绞接的平行四边形的两对偶立的杆控制决定。

两旋转对偶轴与螺旋对偶轴必须平行以保证能生成{X (u)}子群组。每条机械臂,第一个2对偶,即同轴旋转对偶和螺旋对偶组成固定机器人的固定部分,同时形成处于相同平面的轴的机械结构,将其分为三个相同部分,从而形成了Y行状。因此任意两轴之间的角度都占整个空间角度的2 /3。机器人的移动部分由PaR系列组成,都能集中于移动平台做指定的某点位置。平台与参考平面保持平行,不能绕垂直于参考平面的轴旋转。任何的一种专有的末端执行器都能是放置在这流动的平台上。 所得到的反应移动平台的{T}子群仅能在空间进行平移,在[8]中给出。

H型机器人

大部分并型机器人包括Delta机器人和Y Star机器人,其末端执行器的工作空间与整个装置相比较小。这是此类机器人的一个缺陷。为了避免这种工作空间的限制,对偶此装置安装具有平行轴的电动千斤顶。与Y Star相似的机器人臂不能使用:三个相同集{X (v)}的交集等于{X (v)}而不是{T}。因此,在计新的H机器人[16]时,我们选择与Y-Sta相同的两条手臂,第三条手臂可与Delta手臂相比。这第三条机械臂开始形成带有与第一个两电动千斤顶平行的机动化柱状对偶的固定框架。继以之绞接的二维平行四边形,此四边形由于其中一根杆的缘故能绕垂直于P对偶的轴转动。与此杆相对偶的杆经由平行轴的旋转对偶R被连结到移动平台上。当平行四边形形状变化时,这个性质被保持(自由度为一)。此机器人的第一个样机有一个团队的学生在Pastoré教授的指导下于法国“IUT de Ville D’Avray”完成的。此H型机器人安装了具有3种系统的螺杆(1)/大间距的螺母

(2),能允许快速移动。它由轴承(6)通过执行机构M控制。三个绞接的平行四边形位于(4)的两端,在(5)的中间将螺母与水平平台(3)连接。机架(7)支撑着整个结构(图2)。边螺旋杆允许沿着其轴转动和移动。中心螺母则不允许平行四边形构架的转动。移动平台与半气缸相似,其自由度为3。这装置的主要优点是那工作空间是直接与平行轴长度成比例,能得到一个较大工作空间。

柱状-机器人

滑动对偶偶P较好的性有能在在工业机械元件上得到应用的可能。一个平行四边形能够利用四转动对偶偶R得到一个移动自由度。因此,利用柱状对偶偶代替平行四边形(Star机器人)进行机器人设计是一个经济可行的方法。人们想象出了由CPR三重次序组成的很多几何排列(圆柱形对偶偶C可能能被RP代替以得到一电动千斤顶)。轴C必须在每次排列中与R轴平行。P对偶偶的方向可以是任意的。柱状机器人的草图见图3。两固定电动千斤顶是同轴的。第三个电动千斤顶为垂直安装。实际上,这些轴都是水平的。两柱状对偶偶相对偶于前两轴呈45度角。第三柱状对偶偶与第三轴垂直。移动平台在不需要人为调节的条件下在较大工作空间内自行移动。

结论

很多资料[10], [11], [12], [13], [14], [15]表明了假设群论的,特别是其动力学的重要性。通过对偶新的并行机器人的查证能够对偶我们进行机器人原型的构造有很大帮助。其机械性能的日益增加和制造费用的降低用使得机器人在当今工业制造中越来越具有吸引力。这种新机器人具有通用并行机器人在定位、灵敏性和马达定位安装方面的优点,可代替DELTA机器人。

简写列表 1{设计机器人的英语作文}.

置换组的子群

{E} 恒等。

{t(D)} 对直线 D 的平移。

{R(N,u)}绕轴旋转装置.( 或同等物对 N',和 NN 的 u'^u=O)

{H(N,u,p)} 转轴 (N ,u,p)= 2 k 的螺旋运动。

{t(P)} 对平面 P 的平移。

{C(N,u)}沿轴平移的组合旋转装置.(N,u)

{t} 空间的平移。{设计机器人的英语作文}.

{G(P)} 对平面P的平行平面运动。

{Y(w,p)}平面垂直平移到 w 所允许的平移旋转和沿任何轴平行到 w 的旋转动作。 {S(N)} 在点N周围的额球状的旋转装置。

{X(w)} 允许空间和沿任一轴旋转到 w 的平移旋转装置运动。

{D} 综合刚体运动。

Design of parallel manipulators via the displacement group

Jacques M.HERVE

ECELE CENTRALE PARIS

92295 CHATENAY MALABRY CEDEX

FRANCE

Abstract: Our aim is to give a complete presentation of the application of Life Group Theory to the structural design of manipulator robots. We focused our attention on parallel

manipulator robots and in particular those capable of spatial translation. This is justified by many industrial applications which do not need the orientation of the end-effectors in the space. The advantage of this method is that we can derive systematically all kinematics chains which produce the desired displacement subgroup. Hence, an entire family of robots results from our investigation. The T-STAR manipulator is now a working device. H-ROBOT, PRISM-ROBOT are new possible robots. These manipulators respond to the increasing

demand of fast working rhythms in modern production at a low cost and are suited for any kind of pick and place jobs like sorting, arranging on palettes, packing and assembly.

Keywords: Kinematics, Parallel Robot.

Introduction

The mathematical theory of groups can be applied to the set of displacements. If we can call {D} the set of all possible displacements, it is proved, according to this theory, that {D} have a group structure. The most remarkable movements of a rigid body are then represented by subgroups of {D}. This method leads to a classification of mechanism [1]. The main step for establishing such a classification is the derivation of an exhaustive inventory of the subgroups of the displacement group. This can be done by a direct reasoning by examining all the kinds of products of rotations and translations [2].

However, a much more effective method consists in using Lie Group Theory [3] , [4].

Lie Groups are defined by analytical transformations depending on a finite number of real parameters. The displacement group {D} is a special case of a Lie Group of dimension six.

Lie’s Theory

Within the framework of Lie’ Theory, we associate infinitesimal transformations making up a Lie algebra with finite operations which are obtained from the previous ones by exponentiation. Continuous analytical groups are described by the exponential of

differential operators which correspond to the infinitesimal transformations of the group. Furthermore, group properties are interpreted by the algebraic structure of Lie algebra of the differential operators and conversely. We recall the main definition axiom of a Lie algebra: a Lie algebra is a vector space endowed with a bilinear skew symmetric closed product. It is

well know [5] , that the set of screw velocity fields is a vector space of dimension six for the natural operations at a given point N.

By following the steps indicated in [3] we can produce the exhaustive list of the Lie subgroup of Euclidean displacements {D} (see synoptical list 1). This is done by first defining a

differential operator associated with the velocity field. Then, by exponentiation, we derive the formal Lie expression of finite displacements which are shown to be equivalent to affine direct orthonormal transformations. Lie sub-algebras of screw velocity fields lead to the description of the displacement subgroups.

The {X (w)} subgroup

In order to generate spatial translation with parallel mechanisms, we are led to look for

displacements subgroups the intersection of which is the spatial translation subgroup {T}.We will consider only the cases for which the intersection subgroup is strictly included in the two “parallel” subgroups. The most important case of this sort is the parallel association of two {X (w)} subgroups with two distinct vector directions w and w’. It is easy to prove:{设计机器人的英语作文}.

{X(w)}{X(w’)}={T},w≠w’

The subgroup {X (w)} plays a prominent role in mechanism design. This subgroup combines spatial translation with rotation about a movable axis which remains parallel to given direction w , well defined by the unit vector w. Physical implementations of {X(w)}

mechanical liaisons can be obtained by ordering in series kinematics pairs represented by subgroups of {X(w)}. Practically only prismatic pair and a revolute pair P, R, H are use to build robots (the cylindric pair C combines in a compact way a prismatic pair and a revolute pair).

A complete list of all possible combinations of these kinematics pairs generating the {X (w)} subgroup is given in [6].

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:http://www.15033.cn/chuzhong/cezw/246728.html

中学网 - 让教育更简单

http://www.15033.cn/

蜀ICP备19007375号

Powered By 中学网版权所有