首页 > 作文 > 初中生作文 > 初一作文

初一数学上册知识点

admin 初一作文 2020-04-22 23:52:18 有理数单项式

篇一:《初一数学上册知识点》

荣升教育———-初中数学一对一辅导中心

初一数学(上)应知应会的知识点

代数初步知识

1. 代数式:用运算符号“+ - × ÷ „„ ”连接数及表示数的字母的式子称为代数式(字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式)

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写; (2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号; (3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a; (4)带分数与字母相乘时,要把带分数改成假分数形式,如a×1

12

应写成a;

2

3

3

(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式;

a

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做

a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a2-b2 ; a与b差的平方是:(a-b)2 ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数

是: n-1、n、n+1 ;

(4)若b>0,则正数是:a2+b ,负数是: -a2-b ,非负数是: a2 ,非正数是:-a2 . 有理数 1.有理数: (1)凡能写成

qp

(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数

统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正

– 1 –

荣升教育———-初中数学一对一辅导中心

数;不是有理数;

正有理数

(2)有理数的分类: ① 有理数零

负有理数

正整数

正分数负整数

负分数

整数

② 有理数

分数

正整数零负整数正分数

负分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a>0  a是正数;a<0  a是负数;

a≥0  a是正数或0  a是非负数;a≤ 0  a是负数或0  a是非正数. 2.数轴:数轴是规定了原点、正方向、单位长度的一条直线. 3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0; (2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b; (3)相反数的和为0  a+b=0  a、b互为相反数. 4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

(a0)a

(a0)a

(2) 绝对值可表示为:a0(a0)或a ;绝对值的问题经常分类讨论;

a(a0)a(a0)

aa

aa

(3)

1a0

1a0

ab

ab

(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

.

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数

大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

– 2 –

荣升教育———-初中数学一对一辅导中心

6.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是;倒数是本身的

a1

数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数. 7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值; (3)一个数与0相加,仍得这个数. 8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c). 9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b). 10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘; (2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc); (3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即13.有理数乘方的法则: (1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)n=-an或(a -b)n=-(b-a)n , 当

n为正偶数时: (-a)n =an 或 (a-b)n=(b-a)n . 14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

– 3 –

a0

无意义.

荣升教育———-初中数学一对一辅导中心

(3)a2是重要的非负数,即a2≥0;若a2+|b|=0  a=0,b=0;

0.10.01

2

11

(4)据规律 2底数的小数点移动一位,平方数的小数点移动二位.

10100

2

15.科学记数法:把一个大于10的数记成a×10n的形式,其中a是整数数位只有一位的数,这种记数法叫

科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字. 18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. 整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数. 3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax2+bx+c和x2+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式.

单项式整式整式分类为: . 

多项式

– 4 –

荣升教育———-初中数学一对一辅导中心

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项. 7.合并同类项法则:系数相加,字母与字母的指数不变.

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”! 2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式; 等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式. 3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”! 5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0). 8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„ (检验方程的解). 10.列一元一次方程解应用题:{初一数学上册知识点}.

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—–”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量

– 5 –

篇二:《最新初一数学上册知识点复习大全》

初一数学(上)知识点

有理数

1.有理数:

(1)凡能写成q(p,q为整数且p0)形式的数,都是有理数.正整数、0、负整数统称整数;正分数、负分数p

统称分数;整数和分数统称有理数.注意:0即不是正数,也不是负数;-a不一定是负数,+a也不一定是正数;不是有理数;

正整数正整数正有理数正分数整数零(2)有理数的分类: ① 有理数零 ② 有理数负整数

负整数正分数负有理数分数负分数负分数

(3)注意:有理数中,1、0、-1是三个特殊的数,它们有自己的特性;这三个数把数轴上的数分成四个区域,这四个区域的数也有自己的特性;

(4)自然数 0和正整数;a>0  a是正数;a<0  a是负数;

a≥0  a是正数或0  a是非负数;a≤ 0  a是负数或0  a是非正数.

2.数轴:数轴是规定了原点、正方向、单位长度的一条直线.

3.相反数:

(1)只有符号不同的两个数,我们说其中一个是另一个的相反数;0的相反数还是0;

(2)注意: a-b+c的相反数是-a+b-c;a-b的相反数是b-a;a+b的相反数是-a-b;

(3)相反数的和为0  a+b=0  a、b互为相反数.

4.绝对值:

(1)正数的绝对值是其本身,0的绝对值是0,负数的绝对值是它的相反数;注意:绝对值的意义是数轴上表示某数的点离开原点的距离;

a(a0)a(a0)(2) 绝对值可表示为:a0(a0)或a ;绝对值的问题经常分类讨论; a(a0)a(a0)

– 1 –

(3) a

a1a0 ; a

a1a0;

a

ba. b(4) |a|是重要的非负数,即|a|≥0;注意:|a|·|b|=|a·b|,

5.有理数比大小:(1)正数的绝对值越大,这个数越大;(2)正数永远比0大,负数永远比0小;(3)正数

大于一切负数;(4)两个负数比大小,绝对值大的反而小;(5)数轴上的两个数,右边的数总比左边的数大;(6)大数-小数 > 0,小数-大数 < 0.

16.互为倒数:乘积为1的两个数互为倒数;注意:0没有倒数;若 a≠0,那么a的倒数是;倒数是本身的a

数是±1;若ab=1 a、b互为倒数;若ab=-1 a、b互为负倒数.

7. 有理数加法法则:

(1)同号两数相加,取相同的符号,并把绝对值相加;

(2)异号两数相加,取绝对值较大的符号,并用较大的绝对值减去较小的绝对值;

(3)一个数与0相加,仍得这个数.

8.有理数加法的运算律:

(1)加法的交换律:a+b=b+a ;(2)加法的结合律:(a+b)+c=a+(b+c).

9.有理数减法法则:减去一个数,等于加上这个数的相反数;即a-b=a+(-b).

10 有理数乘法法则:

(1)两数相乘,同号为正,异号为负,并把绝对值相乘;

(2)任何数同零相乘都得零;

(3)几个数相乘,有一个因式为零,积为零;各个因式都不为零,积的符号由负因式的个数决定. 11 有理数乘法的运算律:

(1)乘法的交换律:ab=ba;(2)乘法的结合律:(ab)c=a(bc);

(3)乘法的分配律:a(b+c)=ab+ac .

12.有理数除法法则:除以一个数等于乘以这个数的倒数;注意:零不能做除数,即无意义.

– 2 – a0

13.有理数乘方的法则:

(1)正数的任何次幂都是正数;

(2)负数的奇次幂是负数;负数的偶次幂是正数;注意:当n为正奇数时: (-a)=-a或(a -b)=-(b-a) , 当

n为正偶数时: (-a) =a或 (a-b)=(b-a) .

14.乘方的定义:

(1)求相同因式积的运算,叫做乘方;

(2)乘方中,相同的因式叫做底数,相同因式的个数叫做指数,乘方的结果叫做幂;

(3)a是重要的非负数,即a≥0;若a+|b|=0  a=0,b=0;

0.120.01211(4)据规律 2底数的小数点移动一位,平方数的小数点移动二位. 10100222nn nnnnnn

15.科学记数法:把一个大于10的数记成a×10的形式,其中a是整数数位只有一位的数,这种记数法叫

科学记数法.

16.近似数的精确位:一个近似数,四舍五入到那一位,就说这个近似数的精确到那一位.

17.有效数字:从左边第一个不为零的数字起,到精确的位数止,所有数字,都叫这个近似数的有效数字.

18.混合运算法则:先乘方,后乘除,最后加减;注意:怎样算简单,怎样算准确,是数学计算的最重要的原则.

19.特殊值法:是用符合题目要求的数代入,并验证题设成立而进行猜想的一种方法,但不能用于证明. n代数初步知识

1. 代数式:用运算符号“+ - × ÷ „„ ”连接数及表示数的字母的式子称为代数式.注意:用字母表示数有一定的限制,首先字母所取得数应保证它所在的式子有意义,其次字母所取得数还应使实际生活或生产有意义;单独一个数或一个字母也是代数式.

2.列代数式的几个注意事项:

(1)数与字母相乘,或字母与字母相乘通常使用“· ” 乘,或省略不写;

(2)数与数相乘,仍应使用“×”乘,不用“· ”乘,也不能省略乘号;

– 3 –

(3)数与字母相乘时,一般在结果中把数写在字母前面,如a×5应写成5a;

31(4)带分数与字母相乘时,要把带分数改成假分数形式,如a×1应写成a; 22

3(5)在代数式中出现除法运算时,一般用分数线将被除式和除式联系,如3÷a写成的形式; a

(6)a与b的差写作a-b,要注意字母顺序;若只说两数的差,当分别设两数为a、b时,则应分类,写做

a-b和b-a .

3.几个重要的代数式:(m、n表示整数)

(1)a与b的平方差是: a-b ; a与b差的平方是:(a-b) ;

(2)若a、b、c是正整数,则两位整数是: 10a+b ,则三位整数是:100a+10b+c;

(3)若m、n是整数,则被5除商m余n的数是: 5m+n ;偶数是:2n ,奇数是:2n+1;三个连续整数

是: n-1、n、n+1 ;

(4)若b>0,则正数是:a+b ,负数是: -a-b ,非负数是: a,非正数是:-a. 222 2 222整式的加减

1.单项式:在代数式中,若只含有乘法(包括乘方)运算。或虽含有除法运算,但除式中不含字母的一类代数式叫单项式.

2.单项式的系数与次数:单项式中不为零的数字因数,叫单项式的数字系数,简称单项式的系数;系数不为零时,单项式中所有字母指数的和,叫单项式的次数.

3.多项式:几个单项式的和叫多项式.

4.多项式的项数与次数:多项式中所含单项式的个数就是多项式的项数,每个单项式叫多项式的项;多项式里,次数最高项的次数叫多项式的次数;注意:(若a、b、c、p、q是常数)ax+bx+c和x+px+q是常见的两个二次三项式.

5.整式:凡不含有除法运算,或虽含有除法运算但除式中不含字母的代数式叫整式. 22

单项式整式分类为:整式 . 多项式

6.同类项:所含字母相同,并且相同字母的指数也相同的单项式是同类项.

7.合并同类项法则:系数相加,字母与字母的指数不变.

– 4 –

8.去(添)括号法则:去(添)括号时,若括号前边是“+”号,括号里的各项都不变号;若括号前边是“-”号,括号里的各项都要变号.

9.整式的加减:整式的加减,实际上是在去括号的基础上,把多项式的同类项合并.

10.多项式的升幂和降幂排列:把一个多项式的各项按某个字母的指数从小到大(或从大到小)排列起来,叫做按这个字母的升幂排列(或降幂排列).注意:多项式计算的最后结果一般应该进行升幂(或降幂)排列. 一元一次方程

1.等式与等量:用“=”号连接而成的式子叫等式.注意:“等量就能代入”!

2.等式的性质:

等式性质1:等式两边都加上(或减去)同一个数或同一个整式,所得结果仍是等式;

等式性质2:等式两边都乘以(或除以)同一个不为零的数,所得结果仍是等式.

3.方程:含未知数的等式,叫方程.

4.方程的解:使等式左右两边相等的未知数的值叫方程的解;注意:“方程的解就能代入”!

5.移项:改变符号后,把方程的项从一边移到另一边叫移项.移项的依据是等式性质1.

6.一元一次方程:只含有一个未知数,并且未知数的次数是1,并且含未知数项的系数不是零的整式方程是一元一次方程.

7.一元一次方程的标准形式: ax+b=0(x是未知数,a、b是已知数,且a≠0).

8.一元一次方程的最简形式: ax=b(x是未知数,a、b是已知数,且a≠0).

9.一元一次方程解法的一般步骤: 整理方程 „„ 去分母 „„ 去括号 „„ 移项 „„ 合并同类项 „„ 系数化为1 „„ (检验方程的解).

10.列一元一次方程解应用题:

(1)读题分析法:„„„„ 多用于“和,差,倍,分问题”

仔细读题,找出表示相等关系的关键字,例如:“大,小,多,少,是,共,合,为,完成,增加,减少,配套—–”,利用这些关键字列出文字等式,并且据题意设出未知数,最后利用题目中的量与量的关系填入代数式,得到方程.

(2)画图分析法: „„„„ 多用于“行程问题”

– 5 –

篇三:《最新人教版七年级数学上册总复习知识点汇总》

七年级数学上册知识点

第一章 有理数

1.1 正数与负数

①正数:大于0的数叫正数。(根据需要,有时在正数前面也加上“+”)

②负数:在以前学过的0以外的数前面加上负号“—”的数叫负数。与正数具有相反意义。

③0既不是正数也不是负数。0是正数和负数的分界,是唯一的中性数。

注意:搞清相反意义的量:南北;东西;上下;左右;上升下降;高低;增长减少等

1.2 有理数

1、有理数(1)整数:正整数、0、负整数统称整数;(2)分数;正分数和负分数统称分数;

(3)有理数:整数和分数统称有理数。

2、数轴(1)定义 :通常用一条直线上的点表示数,这条直线叫数轴;

(2)数轴三要素:原点、正方向、单位长度;

(3)原点:在直线上任取一个点表示数0,这个点叫做原点;

(4)数轴上的点和有理数的关系:所有的有理数都可以用数轴上的点表示出来,但数轴上

的点,不都是表示有理数。

3、相反数:只有符号不同的两个数叫做互为相反数。(例:2的相反数是-2;0的相反数是0)

4、绝对值:(1)数轴上表示数a的点与原点的距离叫做数a的绝对值,记作|a|。从几何意义上讲,

数的绝对值是两点间的距离。

(2) 一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0。

两个负数,绝对值大的反而小。

1.3 有理数的加减法

①有理数加法法则:

1、同号两数相加,取相同的符号,并把绝对值相加。

2、绝对值不相等的异号两数相加,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。互为相反数的两个数相加得0。

3、一个数同0相加,仍得这个数。

加法的交换律和结合律

②有理数减法法则:减去一个数,等于加这个数的相反数。

1.4 有理数的乘除法

①有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;

任何数同0相乘,都得0;

乘积是1的两个数互为倒数。

乘法交换律/结合律/分配律

②有理数除法法则:除以一个不等于0的数,等于乘这个数的倒数;

两数相除,同号得正,异号得负,并把绝对值相除;

0除以任何一个不等于0的数,都得0。

1.5 有理数的乘方

1、求n个相同因数的积的运算,叫乘方,乘方的结果叫幂。在a的n次方中,a叫做底数,n叫做

指数。负数的奇次幂是负数,负数的偶次幂是正数。正数的任何次幂都是正数,0的任何次幂都是0。

2、有理数的混合运算法则:先乘方,再乘除,最后加减;同级运算,从左到右进行;如有括号,先做括号内的运算,按小括号、中括号、大括号依次进行。

3、把一个大于10的数表示成a×10的n次方的形式,使用的就是科学计数法,注意a的范围为1≤a <10。

4、从一个数的左边第一个非0数字起,到末位数字止,所有数字都是这个数的有效数字。四舍五入遵从精确到哪一位就从这一位的下一位开始,而不是从数字的末尾往前四舍五入。比如:3.5449精确到0.01就是3.54而不是3.55.

第二章 整式的加减

2.1 整式

1、单项式:由数字和字母乘积组成的式子。系数,单项式的次数. 单项式指的是数或字母的积的代数式.单独一个数或一个字母也是单项式.因此,判断代数式是否是单项式,关键要看代数式中数与字母是否是乘积关系,即分母中不含有字母,若式子中含有加、减运算关系,其也不是单项式.

2、单项式的系数:是指单项式中的数字因数;

3、单项数的次数:是指单项式中所有字母的指数的和.

4、多项式:几个单项式的和。判断代数式是否是多项式,关键要看代数式中的每一项是否是单项式.每个单项式称项,常数项,多项式的次数就是多项式中次数最高的次数。多项式的次数是指多项式里次数最高项的次数,这里ab是次数最高项,其次数是6;多项式的项是指在多项式中,每一个单项式.特别注意多项式的项包括它前面的性质符号.

5、它们都是用字母表示数或列式表示数量关系。注意单项式和多项式的每一项都包括它前面的符号。

6、单项式和多项式统称为整式。 33

2.2整式的加减

1、同类项:所含字母相同,并且相同字母的指数也相同的项。与字母前面的系数(≠0)无关。

2、同类项必须同时满足两个条件:(1)所含字母相同;(2)相同字母的次数相同,二者缺一不可.同类项与系数大小、字母的排列顺序无关

3、合并同类项:把多项式中的同类项合并成一项。可以运用交换律,结合律和分配律。

4、合并同类项法则:合并同类项后,所得项的系数是合并前各同类项的系数的和,且字母部分不变;

5、去括号法则:去括号,看符号:是正号,不变号;是负号,全变号。

6、整式加减的一般步骤:

一去、二找、三合

(1)如果遇到括号按去括号法则先去括号. (2)结合同类项. (3)合并同类项

第三章 一元一次方程

3.1 一元一次方程

1、方程是含有未知数的等式。

2、方程都只含有一个未知数(元)x,未知数x的指数都是1(次),这样的方程叫做一元一次方程。 注意:判断一个方程是否是一元一次方程要抓住三点:

1)未知数所在的式子是整式(方程是整式方程);

2)化简后方程中只含有一个未知数;

3)经整理后方程中未知数的次数是1.

3、解方程就是求出使方程中等号左右两边相等的未知数的值,这个值就是方程的解。

4、等式的性质: 1)等式两边同时加(或减)同一个数(或式子),结果仍相等;

2)等式两边同时乘同一个数,或除以同一个不为0的数,结果仍相等。

注意:运用性质时,一定要注意等号两边都要同时变;运用性质2时,一定要注意0这个数.

3.2 、3.3解一元一次方程

在实际解方程的过程中,以下步骤不一定完全用上,有些步骤还需重复使用. 因此在解方程时还要注意以下几点:

①去分母:在方程两边都乘以各分母的最小公倍数,不要漏乘不含分母的项;分子是一个整体,去分母后应加上括号;去分母与分母化整是两个概念,不能混淆;{初一数学上册知识点}.

②去括号:遵从先去小括号,再去中括号,最后去大括号;不要漏乘括号的项;不要弄错符号; ③移项:把含有未知数的项移到方程的一边,其他项都移到方程的另一边(移项要变符号) 移项要变号;

④合并同类项:不要丢项,解方程是同解变形,每一步都是一个方程,不能像计算或化简题那样写能连等的形式;

⑤系数化为1::字母及其指数不变系数化成1,在方程两边都除以未知数的系数a,得到方程的解。不要分子、分母搞颠倒。

3.4 实际问题与一元一次方程

一.概念梳理

⑴列一元一次方程解决实际问题的一般步骤是:①审题,特别注意关键的字和词的意义,弄清相关

数量关系;②设出未知数(注意单位);③根据相等关系列

出方程;④解这个方程;⑤检验并写出答案(包括单位名称)。

⑵一些固定模型中的等量关系及典型例

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:http://www.15033.cn/chuzhong/cyzw/220501.html

中学网 - 让教育更简单

http://www.15033.cn/

蜀ICP备19007375号

Powered By 中学网版权所有