篇一:《初中经典几何证明练习题(含答案)》
初中几何证明题
经典题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.(初二)
证明:过点G作GH⊥AB于H,连接OE
∵EG⊥CO,EF⊥AB
∴∠EGO=90°,∠EFO=90°
∴∠EGO+∠EFO=180°
∴E、G、O、F四点共圆
∴∠GEO=∠HFG
∵∠EGO=∠FHG=90°
∴△EGO∽△FHG ∴EOGO= FGHG
∵GH⊥AB,CD⊥AB
∴GH∥CD GOCO HGCD
EOCO∴ FGCD∴
∵EO=CO
∴CD=GF
2、已知:如图,P是正方形ABCD内部的一点,∠PAD=∠PDA=15°。
求证:△PBC是正三角形.(初二)
证明:作正三角形ADM,连接MP
∵∠MAD=60°,∠PAD=15°
∴∠MAP=∠MAD+∠PAD=75°
∵∠BAD=90°,∠PAD=15°
∴∠BAP=∠BAD-∠PAD=90°-15°=75°
∴∠BAP=∠MAP
∵MA=BA,AP=AP
∴△MAP≌△BAP
∴∠BPA=∠MPA,MP=BP
同理∠CPD=∠MPD,MP=CP
∵∠PAD=∠PDA=15°
∴PA=PD,∠BAP=∠CDP=75°
∵BA=CD
∴△BAP≌∠CDP
∴∠BPA=∠CPD
∵∠BPA=∠MPA,∠CPD=∠MPD
∴∠MPA=∠MPD=75°
∴∠BPC=360°-75°×4=60°
∵MP=BP,MP=CP ∴BP=CP ∴△BPC是正三角形
3、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN
于E、F.
求证:∠DEN=∠F.
证明:连接AC,取AC的中点G,连接NG、MG
∵CN=DN,CG=DG
∴GN∥AD,GN=1AD 2
∴∠DEN=∠GNM
∵AM=BM,AG=CG
∴GM∥BC,GM=1BC 2
∴∠F=∠GMN
∵AD=BC
∴GN=GM
∴∠GMN=∠GNM
∴∠DEN=∠F
经典题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M.
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.(初二)
证明:(1)延长AD交圆于F,连接BF,过点O作OG⊥AD于G
∵OG⊥AF
∴AG=FG
⌒ =AB⌒ ∵AB
∴∠F=∠ACB
又AD⊥BC,BE⊥AC
∴∠BHD+∠DBH=90°
∠ACB+∠DBH=90°
∴∠ACB=∠BHD
∴∠F=∠BHD
∴BH=BF又AD⊥BC
∴DH=DF
∴AH=AG+GH=FG+GH=GH+DH+DF+GH=2GH+2DH=2(GH+DH)=2GD
又AD⊥BC,OM⊥BC,OG⊥AD
∴四边形OMDG是矩形
∴OM=GD ∴AH=2OM
(2)连接OB、OC
∵∠BAC=60∴∠BOC=120°
∵OB=OC,OM⊥BC
∴∠BOM=1∠BOC=60°∴∠OBM=30° 2
∴BO=2OM
由(1)知AH=2OM∴AH=BO=AO
2、设MN是圆O外一条直线,过O作OA⊥MN于A,自A引圆的两条割线交圆O于B、C及D、E,连接CD并延长交MN于Q,连接EB并延长交MN于P.
求证:AP=AQ.
证明:作点E关于AG的对称点F,连接AF、CF、QF
∵AG⊥PQ ∴∠PAG=∠QAG=90°
又∠GAE=∠GAF ∴∠PAG+∠GAE=∠QAG+∠GAF
即∠PAE=∠QAF
∵E、F、C、D四点共圆
∴∠AEF+∠FCQ=180°
∵EF⊥AG,PQ⊥AG
∴EF∥PQ
∴∠PAF=∠AFE
∵AF=AE
∴∠AFE=∠AEF
∴∠AEF=∠PAF 在△AEP和△AFQ中
∵∠PAF+∠QAF=180° ∠AFQ=∠AEP
∴∠FCQ=∠QAF AF=AE
∴F、C、A、Q四点共圆 ∠QAF=∠PAE
∴∠AFQ=∠ACQ ∴△AEP≌△AFQ
又∠AEP=∠ACQ ∴AP=AQ
∴∠AFQ=∠AEP
3、设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN于P、Q. 求证:AP=AQ.(初二)
证明:作OF⊥CD于F,OG⊥BE于G,连接OP、OQ、OA、AF、AG
∵C、D、B、E四点共圆
∴∠B=∠D,∠E=∠C
∴△ABE∽△ADC ∴ABBE2BGBG ADDC2FDDF
∴△ABG∽△ADF
∴∠AGB=∠AFD
∴∠AGE=∠AFC
∵AM=AN,
∴OA⊥MN
又OG⊥BE,
∴∠OAQ+∠OGQ=180°
∴O、A、Q、E四点共圆
∴∠AOQ=∠AGE
同理∠AOP=∠AFC
∴∠AOQ=∠AOP
又∠OAQ=∠OAP=90°,OA=OA
∴△OAQ≌△OAP
∴AP=AQ
4、如图,分别以△ABC的AB和AC为一边,在△ABC的外侧作正方形ABFG和正方形ACDE,点O是DF的中点,OP⊥BC
求证:BC=2OP(初二)
证明:分别过F、A、D作直线BC的垂线,垂足分别是L、M、N
∵OF=OD,DN∥OP∥FL
∴PN=PL
∴OP是梯形DFLN的中位线
∴DN+FL=2OP
∵ABFG是正方形
∴∠ABM+∠FBL=90°
又∠BFL+∠FBL=90°
∴∠ABM=∠BFL
又∠FLB=∠BMA=90°,BF=AB
∴△BFL≌△ABM
∴FL=BM
同理△AMC≌△CND
∴CM=DN
∴BM+CN=FL+DN
∴BC=FL+DN=2OP
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.(初二)
证明:连接BD交AC于O。过点E作EG⊥AC于G
∵ABCD是正方形
∴BD⊥AC又EG⊥AC
∴BD∥EG又DE∥AC
∴ODEG是平行四边形
又∠COD=90°
∴ODEG是矩形
∴EG=OD=111BD=AC=AE 222
∴∠EAG=30°
∵AC=AE
∴∠ACE=∠AEC=75°
又∠AFD=90°-15°=75°
∴∠CFE=∠AFD=75°=∠AEC
∴CE=CF
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F. 求证:AE=AF.(初二)
证明:连接BD,过点E作EG⊥AC于G
∵ABCD是正方形
∴BD⊥AC,又EG⊥AC
∴BD∥EG又DE∥AC
1∴ODEG是平行四边形 ∴∠CAE=∠CEA=∠GCE=15° 又∠COD=90° 2
在△AFC中∠F =180°-∠FAC-∠ACF ∴ODEG是矩形
=180°-∠FAC-∠GCE 111∴EG = OD =BD=AC=CE =180°-135°-30°=15° 222
∴∠F=∠CEA ∴∠GCE=30°
∴AE=AF ∵AC=EC
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF平分∠DCE.
求证:PA=PF.(初二)
证明:过点F作FG⊥CE于G,FH⊥CD于H
∵CD⊥CG ∴HCGF是矩形
∵∠HCF=∠GCF ∴FH=FG
∴HCGF是正方形
∴CG=GF
∵AP⊥FP 设AB=x,BP=y,CG=z
∴∠APB+∠FPG=90° z:y=(x-y+z):x
∵∠APB+∠BAP=90° 化简得(x-y)·y=(x-y)·z
∴∠FPG=∠BAP ∵x-y≠0
又∠FGP=∠PBA ∴y=z
∴△FGP∽△PBA 即BP=FG
∴FG:PB=PG:AB ∴△ABP≌△PGF
4、如图,PC切圆O于C,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D. 求证:AB=DC,BC=AD.(初三)
证明:过点E作EK∥BD,分别交AC、AF于M、K,取EF的中点H,
连接OH、MH、EC
∵EH=FH
∴OH⊥EF,∴∠PHO=90° ∴EM=KM
又PC⊥OC,∴∠POC=90° ∵EK∥BD ∴P、C、H、O四点共圆 OBAOOD∴ ∴∠HCO=∠HPO EMAMKM又EK∥BD,∴∠HPO=∠HEK ∴OB=OD
∴∠HCM=∠HEM 又AO=CO
∴H、C、E、M四点共圆 ∴四边形ABCD的对角
∴∠ECM=∠EHM 线互相平分
又∠ECM=∠EFA ∴ABCD是平行四边形
∴∠EHM=∠EFA ∴AB=DC,BC=AD
∴HM∥AC
∵EH=FH
篇二:《初中数学几何证明经典试题(含答案)》
初中几何证明题
经典题(一)
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO. 求证:CD=GF.
E
A B
D O F
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150.
A D 求证:△PBC是正三角形.
C B
3、如图,已知四边形ABCD、A1B1C1D1都是正方形,A2、B2、C2、D2分别是AA1、BB1、
CC1、DD1的中点.
D
求证:四边形A2B2C2D2是正方形. DAA1
1
C
B2 2
C
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC
的延长线交MN于E、F.
求证:∠DEN=∠F.
第 1 页 共 15 页
B
经典题(二)
1、已知:△ABC中,H为垂心(各边高线的交点),O
(1)求证:AH=2OM;
(2)若∠BAC=600,求证:AH=AO.
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A及D、E,直线EB及
CD分别交MN于P、Q. 求证:AP=AQ.
3、如果上题把直线MN由圆外平移至圆内,则由此可得以下命题:
设MN是圆O的弦,过MN的中点A任作两弦BC、DE,设CD、EB分别交MN
于P、Q.
求证:AP=AQ.
4、如图,分别以△ABC的AC和BC为一边,在△ABC的外侧作正方形ACDE和正方形CBFG,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.
第 2 页 共 15 页
F
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F.
求证:CE=CF.
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线EC交DA延长线于F.
求证:AE=AF.
3、设P是正方形ABCD一边
求证:PA=PF.
4、如图,PC切圆O于C,AC为圆的直径,PEFB
、D.求证:AB=DC,BC=AD.
第 3 页 共 15 页
经典题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,
求:∠APB的度数.
2、设P
是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.
3、设ABCD为圆内接凸四边形,求证:AB·CD+AD·BC=AC·
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.
经典难题(五)
第 4 页 共 15 页
1、 设P是边长为1的正△ABC内任一点,L=PA+PB+PC, 求证:
≤L<2.
2、已知:P是边长为1的正方形ABCD内的一点,求PA+PB+PC的最小值.
3、P为正方形ABCD内的一点,并且PA=a,PB=2a,PC=3a,求正方形的边长.
4、如图,△ABC中,∠ABC=∠ACB=800,D、E分别是AB、AC上的点,∠DCA=300,∠EBA=200,求∠BED的度数.
经典题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,
第 5 页 共 15 页
篇三:《初中平面几何证明题及答案》
九年级数学练习题
1.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG
求证:S△ABCS△
AEG
2.如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG。若O为EG的中点 求证:EG=2AO
3. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若O为EG的中点,OA的延长线交BC于点H
求证:OH⊥
BC
4. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接EG,若AH⊥BC,HA的延长线交EG于点O
求证:O为EG的中点
5. 如图,分别以△ABC的边AB、AC为边,向外作正方形ABFG和ACDE,连接CE,BG、GE
M、N、P、Q分别是EG、GB、BC、CE的中点
求证:四边形MNPQ是正方形
答案: 1. 作CM⊥AB于点M
,EN⊥GA,交GA的一次性于点N
∵∠MAN=∠CAE=90°
∴∠CAM=∠EAN
∵∠ANE=∠CMA=90°,AC=AE
∴△ACM≌△AEN
∴CM=EN
∵S△ABC=1/2*AB *CM,S△AGE=1/2*AG*EN
又∵AG=AB,CM=EN
∴S△ABC=S△AEG
2. 证明:
延长AO到点M,使OM=OA,连接MG、ME
则四边形AEMG是平行四边形
∴GM=AE=AC,MG‖AE
∴∠MGA+∠GAE=180°
∵∠BAG+∠CAE=180°
∴∠BAC+∠GAE=180°
∴∠BAC=∠AGM
∵AC=AB
∴△AGM≌△BAC
∴BC=AM=2AO
3. OA与OH共线,所以向量AO与向量BC的数量积为0即可证出AH⊥BC
我用AB表示向量AB,即此时字母AB都有方向性,下边的都是如此,
2AO=AG+GE
过A作直线BC的平行线交FG于M,交DE于N,
2AO*BC
=(AG+AE)*BC
=AG*BC+AE*BC
=-|AG||BC|cos∠GAM+|AE||BC|cos∠EAN
=|BC|*(-|AB|*sin∠MAB+|AC|*sin∠NAC)
=|BC|*(-|AB|sin∠ABC+|AC|sin∠ACB)
设BC上的高长为h,
上式=|BC|(-h+h)=0
所以AO与BC垂直,即AH⊥BC
5. 连结BE、CG,
∵PQ是△BEC的中位线,
∴PQ//BE,且PQ=BE/2,
同理MN//BC,MN=BE/2,
∴MN=PQ,且MN//PQ,
∴四边形PQMN是平行四边形,
同理MQ=PN=CG/2,{初一几何证明题及答案}.
在△BAE和△GAC中,
BA=GA,
AC=AE,
∵〈BAG=〈CAE=90°,
〈BAG+〈BAC=〈CAE+〈BAC,
∴〈BAE=〈GAC,
∴△BAE≌△GAC,(SAS),
∴BE=CG,
∴BE/2=CG/2,
∴PQ=MQ,
∴四边形PQMN是菱形,
设CG和BE相交于O
〈AEB=〈ACG,(全等三角形对应角相等),
则A、O、C、E四点共圆,(共用AO底,同侧顶角相等的二三角形四点共圆) 〈EOC=〈EAC=90°,
∴BE⊥CG,
∴PQ⊥MQ,
∴四边形PQMN是正方形。
篇四:《精选初中数学几何证明经典试题(含答案)》
初中几何证明题
1、已知:如图,O是半圆的圆心,C、E是圆上的两点,CD⊥AB,EF⊥AB,EG⊥CO求证:CD=GF.(初二) E
A B
D O F
2、已知:如图,P是正方形ABCD内点,∠PAD=∠PDA=150. A D 求证:△PBC是正三角形.(初二)
C B
4、已知:如图,在四边形ABCD中,AD=BC,M、N分别是AB、CD的中点,AD、BC的延长线交MN于E、F. 求证:∠DEN=∠F.
1、已知:△ABC中,H为垂心(各边高线的交点),O为外心,且OM⊥BC于M. (1)求证:AH=2OM;
(2)若∠BAC=60,求证:AH=AO.(初二)
2、设MN是圆O外一直线,过O作OA⊥MN于A,自A引圆的两条直线,交圆于B、C及D、E,直线EB及CD分别交MN于P、Q.
求证:AP=AQ.(初二)
3、如果上题把直线MN设MN是圆O的弦,过MN的中点A任作两弦BC、DE求证:AP=AQ.(初二)
N
4、如图,分别以△ABC的AC和BC为一边,在△ABC,点P是EF的中点.
求证:点P到边AB的距离等于AB的一半.
F
经典题(三)
1、如图,四边形ABCD为正方形,DE∥AC,AE=AC,AE与CD相交于F. 求证:CE=CF.(初二)
2、如图,四边形ABCD为正方形,DE∥AC,且CE=CA,直线
求证:AE=AF.(初二)
3、设P是正方形ABCD一边BC上的任一点,PF⊥AP,CF求证:PA=PF.(初二)
4、如图,PC切圆O于C
,AC为圆的直径,PEF为圆的割线,AE、AF与直线PO相交于B、D.求证:AB=DC
,BC=AD.(初三)
经典题(四)
1、已知:△ABC是正三角形,P是三角形内一点,PA=3,PB=4,求:∠APB的度数.(初二)
2、设P是平行四边形ABCD内部的一点,且∠PBA=∠PDA. 求证:∠PAB=∠PCB.(初二)
4、平行四边形ABCD中,设E、F分别是BC、AB上的一点,AE与CF相交于P,且 AE=CF.求证:∠DPA=∠DPC.(初二)
D
经典题(一)
1.如下图做GH⊥AB,连接EO。由于GOFE四点共圆,所以∠GFH=∠OEG,即△GHF∽△OGE,可得
EOGOCO
==,GFGHCD
又CO=EO,所以CD=GF得证。
2. 如下图做△DGC使与△ADP全等,可得△PDG为等边△,从而可得 △DGC≌△APD≌△CGP,得出PC=AD=DC,和∠DCG=∠PCG=150 所以∠DCP=300 ,从而得出△PBC是正三角形
版权声明
本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:http://www.15033.cn/chuzhong/cyzw/220974.html