最新发布
当前位置: 校园网 > 校园资讯

有理数的定义和性质以及包括什么还有概念 有理数的定义与性质

更新时间:2023-05-20 02:58责任编辑:秦小芳关键词:

有理数的定义和性质以及包括什么还有概念?

1、有理数定义:有理数为整数(正整数、0、负整数)和分数的统称 。

正整数和正分数合称为正有理数,负整数和负分数合称为负有理数。因而有理数集的数可分为正有理数、负有理数和零。

2、有理数性质:在数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。

3、有理数包括:整数、分数。直观表示可以看下图:

扩展资料:

有理数运算定律:

1、加法运算律:

(1)加法交换律:两个数相加,交换加数的位置,和不变,即 (a+b)+c=a+(b+c)。

(2)加法结合律:三个数相加,先把前两个数相加或者先把后两个数相加,和不变,即 a+b=b+a。

2、减法运算律:

减法运算律:减去一个数,等于加上这个数的相反数。即:a-b=a+(-b)。

3、乘法运算律:

(1)乘法交换律:两个数相乘,交换因数的位置,积不变,即 ab=ba。

(2)乘法结合律:三个数相乘,先把前两个数先乘,或者先把后两个相乘,积不变,即 (ab)c=a(bc)。

(3)乘法分配律:某个数与两个数的和相乘等于把这个数分别与这两个数相乘,再把积相加,即a(a+b)=ab+ac。

延伸阅读

有理数指的是什么?

有理数是整数(正整数、0、负整数)和分数的统称,是整数和分数的集合。

整数也可看做是分母为一的分数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。

有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素

有理数的分类按不同的标准有以下两种:

(1)按有理数的定义分类:

(2)按有理数的性质分类:

基本运算法则

加法运算

1、同号两数相加,取与加数相同的符号,并把绝对值相加。

2、异号两数相加,若绝对值相等则互为相反数的两数和为0;若绝对值不相等,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值。

3、互为相反数的两数相加得0。

4、一个数同0相加仍得这个数。

5、互为相反数的两个数,可以先相加。

6、符号相同的数可以先相加。

7、分母相同的数可以先相加。

8、几个数相加能得整数的可以先相加。

减法运算

减去一个数,等于加上这个数的相反数,即把有理数的减法利用数的相反数变成加法进行运算。

乘法运算

1、同号得正,异号得负,并把绝对值相乘。

2、任何数与零相乘,都得零。

3、几个不等于零的数相乘,积的符号由负因数的个数决定,当负因数有奇数个时,积为负,当负因数有偶数个时,积为正。

4、几个数相乘,有一个因数为零,积就为零。

5、几个不等于零的数相乘,首先确定积的符号,然后后把绝对值相乘。

除法运算

1、除以一个不等于零的数,等于乘这个数的倒数。

2、两数相除,同号得正,异号得负,并把绝对值相除。零除以任意一个不等于零的数,都得零。

注意:

零不能做除数和分母。

有理数的除法与乘法是互逆运算。

在做除法运算时,根据同号得正,异号得负的法则先确定符号,再把绝对值相除。若在算式中带有带分数,一般先化成假分数进行计算。若不能整除,则除法运算都转化为乘法运算。

有理数定义与概念讲解?

有理数是能够表示成两个整数之比的数,包括整数,有限小数和无限循环小数整数和分数统称为有理数。有理数:有理数是指两个整数的比。有理数是整数和分数的集合。

校园网——收录全国各地学校网站。
网站简介 | 联系方式 | 网站地图 CopyRight 2014-2023 www.15033.cn, Inc. All Rights Reserved icp备案号 闽ICP备2023005518号