最新发布
当前位置: 校园网 > 知识百科

冲孔精度能达到多少 冲压件精度一般能达到多少

更新时间:2023-06-23 22:33责任编辑:邵小新关键词:

冲孔精度能达到多少

近年来,随着建筑施工行业的迅速发展,钻(冲)孔桩在工程施工中得到了广泛的应用。目前,钻(冲)孔桩除了在成孔方式上不同之外,其在钢筋笼制作、钢筋笼安装、混凝土浇筑等方面均采用了相同的工艺。其成孔方式主要有旋挖成孔和冲击成孔两种,在不同的施工条件下,这两种成孔工艺的适应性、施工效率、成本等也不尽相同。本文旨在通过对旋挖成孔、冲击成孔这两种成孔方式进行对比、分析,为同类工程施工提供借鉴。

一.概述

(1)旋挖桩

旋挖桩机是用回转斗、短螺旋钻头进行干、湿钻进,逐次取土,反复循环作业成孔为基本功能的机械设备。旋挖机采用动力头形式,其工作原理是用短螺旋钻头或旋挖斗,利用强大的扭矩直接将土或砂砾等钻渣旋转挖掘,然后快速提出孔外,形成具有一定直径和深度的桩孔。

(2)冲孔桩

冲孔桩机是利用冲击钻头对孔底冲击破碎成孔的机械设备。其工作原理是利用冲孔桩机动力装置将具有一定重量的冲击钻头提升到一定高度后让其自由下落,利用自由下落的冲击动力对孔底进行周期性的冲击破碎,过程中用泥浆循环的方式对孔内碎屑进行清理,形成具有一定直径和深度的桩孔。

二.技术特点对比

适用地层

1. 旋挖桩:适用于粘土层、淤泥层、砂土层、强度不高的胶结砂岩层、中风化泥岩和强风化岩,在单轴抗压强度30MPa以下硬岩中成孔速度较理想。能满足绝大多数的高层建筑和桥梁施工环境的要求。(目前国内已成功进行过单轴抗压强度120MPa岩层中的旋挖成孔施工)

2. 冲孔桩:适用于填土层、粘土层、粉土层、淤泥层和碎石土层,也适用于卵石层、岩溶发育岩层和裂隙发育的岩层施工,在复杂的场地条件下(如地下漂石、建筑垃圾含筋量高的钢筋砼垃圾等场地内)一般无须采取其他处理手段可直接进行桩基施工,其适用性高,善于“啃硬骨头”。

对场地

1. 旋挖桩:要求 自重大,对场地要求比较严格。旋挖桩机工作状态自重一般在70t左右,但其履带与地面接触面积约7.0m2,所以要求的地基承载力在100KPa左右,在地表水比较丰富或雨季施工情况下,一般需采取回填砖渣的方式保证旋挖桩机的正常运转。

2. 冲孔桩:桩锤重量约10t,桩机重量约15t,加上施工时产生的振动荷载对施工作业面层的要求高,在地表水比较丰富或雨季施工情况下,需采取挤填级配砂石方式提高土层承载力。

成孔方式

1. 旋挖桩:可用短螺旋钻头进行干挖作业,也可用回转钻头在泥浆护壁的情况下进行湿挖作业。

2. 冲孔桩:只能采取泥浆护壁的方式冲击成孔。

钻进速度

1. 旋挖桩:旋挖机采用动力钻头,钻头的钻进力加上钻杆、桩机的重量,钻进能力强。据统计,旋挖桩机成孔速度最快能达到 1m/min,在相同的地层中,旋挖机的成孔速度是冲孔桩机的 3-5倍,优势明显。

2.冲孔桩:钻机自身重量有限,进行硬土地层钻孔时,难以保证钻头施加足够的压力,从而影响了成孔的速率,且每钻进1~2m需停钻掏渣,大部分作业时间消耗在提放钻头和停钻掏渣上,桩孔越深,提钻、掏渣耗时越长,其整体冲进速度较低

清渣方式

1. 旋挖桩:利用旋挖钻头直接将土、砂砾等钻渣旋转挖掘,然后快速提出孔外,清渣相对干净、彻底,孔底沉渣厚度一般可控制在3cm以内。 通过泥浆循环清渣, 1.2m桩可控制在5-7cm, 1.4m以上桩一般在7-10cm。

2. 冲孔桩:孔底沉渣难以掏尽,将会使桩承载力不够稳定。

成桩质量

1. 旋挖桩:孔壁比较平滑、桩径上下一致,孔壁极少出现泥渣沉积物,出现断桩、桩身夹泥、蜂窝等质量问题的可能性较小。

2. 冲孔桩:成孔直径难以统一、孔壁相对不够平滑,在泥浆护壁、掏渣的情况下,极易导致孔壁附有大量泥渣沉结物,存在断桩、桩身夹泥、蜂窝等风险较高。

护筒埋设

1.旋挖桩:护筒安装方便,利用钻机动力头的自重、加压油缸、额定转矩和提升力可自动将钢护筒压入或拔出。

2.冲孔桩:依靠有操作经验的工人采取冲锤及挖机等埋设。

扩底

1. 旋挖桩:配置有配合扩大头工具,可进行扩底施工。

2. 冲孔桩:无法扩底。

混凝土充盈系数

1.旋挖桩:由于采用电脑精确控制,旋挖桩钻进过程中,钻头反复钻进过程中钻进角度、垂直度控制精确,孔径精确成孔质量高,充盈系数一般为1.03~1.05。

2.冲孔桩:由于冲锤上下往复运动,随着钢丝绳的旋转带动冲锤摆动容易造成桩孔不圆,扩孔率较高,其混凝土充盈系数一般大于1.2。

持力层判定

1. 旋挖机在进入强度较高的岩层时,旋挖机的钻进速度明显降低,钻杆有明显的抖动,当达到预判的深度后可直接将挖掘的岩土提升到地面,直接观察孔底基岩情况,及时准确判断入岩情况。

2. 冲孔桩机需要靠泥浆循环才能将孔底的岩渣带出,并且还混杂了一直悬浮在其中前期岩渣,以致未能及时准确判断入岩,往往比设计要求入岩20~30cm才能终孔。

单桩承载力

1. 旋挖桩机靠筒底角刃切土成孔,成孔后孔壁比较粗糙,同钻孔桩比较孔壁几乎没有泥浆的涂抹作用,成桩后桩体与土体的结合程度比较高,相对而言单桩承载力要高。

2. 冲击成孔,在泥浆的涂抹作用下,孔壁相对光滑,但承载力相对要低。

环境保护

1. 旋挖在正常情况下可进行干法施工,不需要泥浆护壁,即使在特殊地层需要泥浆护壁的情况下,泥浆也只起支护作用,钻削中的泥浆含量相当低,污染源大大减少。

2. 冲击钻在钻进、掏渣过程中多采用泥浆循环方式,在施工中需在场内设置泥浆池,文明施工难以控制。

淤泥排放

1. 旋挖桩采用干法成孔,余泥较为干燥,余泥量大约是理论方量的1.3倍左右,可降低运输成本且运输较为方便。

2. 冲击桩因采用泥浆循环方式清渣,余泥含水量高,余泥量大约是理论方量的1.8倍左右,运输工程量增大且运输不便。

噪音

1. 旋挖桩机施工的噪声主要来自机身发动机的声音和钻筒倒渣时的活门撞击声。旋挖机操作中发出的噪音在70~90db 左右,对场地周边环境的生活生产影响相对较小。

2. 冲击桩受冲孔桩机工作原理的制约,噪音污染很难避免,检测30m范围噪音竟达100db以上,尤其是进入岩层冲孔施工时,噪音将更大,容易造成噪音污染。

行走

1. 旋挖钻移位靠自身履带可以自行移动,无需其他机械配合,从一个桩位转移到另一桩位一般15~20分钟即可。

2. 冲击钻靠自身卷扬或者起重机械配合,从一个桩位转移到另一桩位一般则需60~90分钟甚至更长。

桩机定位

1. 旋挖桩:利用先进的电子控制设备进行桩孔的定位,并保证旋挖机始终处于最佳的钻进状态。

2. 冲击桩:人工控制移位、定位,定位缓慢且不精确。

桩孔

1. 旋挖桩:垂直钻掘精度高,通过电液先导自动控制系统,可以精确地调整机座水平度和桅杆的垂直度,垂直精度控制在1‰以内。

2. 冲击桩:用冲孔桩机机身的水平度、机架的垂直度、冲锤的自重来保证,精准度大约控制在8‰以内,施工过程中容易出现斜孔、弯孔。

用电负荷

1. 旋挖桩:采用机身柴油发动机提供动力,对施工场地没有用电的情况尤其适用,同时也省去对电缆的拖运布设和防护,安全性相对较高。

2. 冲击桩:2.2m桩径以下桩机单机用电量为60kw,泥浆泵用电量约30kw,总用电量约90kw。正常情况下,若配备20台桩机,用电负荷约1800kw,用电负荷大,且存在一定的安全隐患。

人员配置

1. 旋挖桩:移机、掏渣均由桩机操作人员一人控制即可完成,另需配备2~3人负责定位、埋设护筒时的辅助工作,一般一台旋挖桩机需配备3-4人。

2.冲击桩:移机、定位、泥浆护壁、清渣等均需配备人员,一般一台冲孔桩机需配备6-10人。

三.成孔工效对比

以广州某高层住宅工程A为例,该工程桩基础为混凝土灌注桩,桩径分1.2m、1.5m两种,桩长初步设为22~50m,实际施工桩长为22~60.8m,共324根桩。场地地质情况由上至下分别为人工填土层、冲积层、残积层和基岩层。其中基岩依据其风化程度分为:全风化、强风化、中风化、微风化四个岩带。桩端持力层为微风化岩层,其单轴抗压强度为11MPa,完全符合旋挖机的施工要求。

该工程在桩基施工过程中采用了旋挖、冲孔两种成孔方式,通过对比,我们得出如下结论:

(1)旋挖机、冲孔桩机整桩成孔工效随着成孔深度的增加而逐步提高,但旋挖机的工效提升速率比冲孔桩机的大。说明旋挖机成孔工效高的优势在长桩成孔中能更好地体现出来,并且成孔深度越大,旋挖成孔的优势就越大。

(2)旋挖机、冲孔桩机整桩成孔工效随着成孔直径的增大而逐步提高,但冲孔桩机提高的速率比旋挖机的大。由于旋挖机的最大输出扭矩是固定的,改用更大的钻头时,其施工效率也基本不变;而冲孔桩机因桩径变大时,可采用更大的桩锤,增大了输出功率,因此较大幅度地提升了施工效率。说明在小桩径桩基础的施工中采用旋挖机较冲孔桩机更有优势,而随着桩径的增大,这种优势逐渐减小。

(3)在入微风化岩时,旋挖机与冲孔桩机的工效比达到最大值。因为旋挖机是带动力的主动钻进,在输出功率保持一致的情况下,其对土层、岩层的破坏力是一致的;而冲孔桩机是靠桩锤的自由落体产生的冲击力作为掘进力,故对岩层的破坏力远远比对土层破坏力低;所以在入岩阶段,冲孔桩机会大大的降低工效,而旋挖机虽然也降低工效,但降低的幅度没有那么大。说明旋挖机比冲孔桩机更适合在入岩深度大或岩层地质条件多变的情况下施工。

结合以上几点,可以看出旋挖机在桩长较深、桩径较小、岩层丰富的条件下,能最大限度的发挥其优越性,其相对冲孔桩机的工效比也将达到最大化。

四.成本对比

以广州某高层住宅工程B为例,该工程桩基础设计采用冲孔灌注桩施工,桩数量为1499根,桩身长度约为8~12m(平均值取10m),桩端持力层为微风化粉砂岩,工程桩入岩深度为2m。场地地质情况由上至下分别为人工填土、淤泥质粉质粘土、粉质粘土、泥质粉砂岩。取样岩石单轴抗压强度在6~19MPa之间,属于较软质岩,完全符合旋挖桩机的施工要求。

(1)施工成本对比

通过对比,得出如下结论:在相同地质条件下,冲击成孔的施工成本低于旋挖成孔,其单价差最大为303.6元/m3。随着桩径的变大,单价差也在随之缩小。

结合工效对比可以看出,旋挖成孔相对于冲击成孔而言,其成孔工效为后者的3-5倍,而成孔费用平均为后者的1.24倍,其费用增速较缓但工效增速迅速。在增加费用的同时,其成孔工效大幅度提高,这对缓解工期压力、保证如期完工是极为有利的。

其他成本对比:购机费用

1. 旋挖钻机:整机的价格较贵,国产旋挖机价格约为 400~500 万元,进口钻机价格要 600 多万元人民币。对于一般的基础施工企业,一次性投资几百甚至上千万元购置设备有一定困难。

2. 冲击桩机:1米桩径的桩机,每台大概11万左右,1.5米桩径的桩机,大概12万左右。价格相对低廉,设备购置费用较低。

其他成本对比:维修费

1.旋挖钻:用时长,旋挖机的全负荷正常工作寿命为 6000 多个小时,超过这一寿命后,一些部件就需要更换修理,尤其是液压系统主泵、动力头以及钻杆钻具,而往往这些关键部件的维修费用较高,时间也较长。 需经常检查钢丝绳磨损情况、卡扣松紧程度、转向装置是否灵活,以免突然掉钻;

2. 冲击桩机:冲击钻头磨损较快,每天均需检修补焊;遇地层不均匀,特别是岩溶地区容易出现卡锤、掉锤、斜孔等事故,维修耗时较长,但是维修成本较低。

其他成本对比:材料成本

冲击桩的混凝土充盈系数约为1.03-1.05。 混凝土充盈系数约为1.2以上,混凝土用量远多于旋挖桩。

其他成本对比:淤泥排放

1. 旋挖桩:余泥量大约是理论方量的1.3倍左右,可降低运输成本且运输较为方便。

2. 冲击桩:余泥量大约是理论方量的1.8倍左右,运输工程量增大且运输不便。

五.结语

通过各方面的对比分析发现,相对于冲孔桩机而言,旋挖机机动灵活,成孔速度快,施工精度高,环境污染少,适应的地层和施工条件范围广,在成本略增加的情况下,其成孔工效可大幅度增加,极大程度上满足了建筑对施工周期及施工质量上的要求。虽然旋挖桩在设备上的一次性投入较大,但是在质量、效率以及整体费用上考虑仍然是较为理想的施工工艺,能够从根本上保证经济效益及施工质量。

冲压件精度一般能达到多少

冲压材料的性能要求

冲压材料是影响零件质量和模具寿命的重要因素。目前,可冲压的材料不仅是低碳钢,而且还有不锈钢、铝及铝合金、铜及铜合金等。一般以含碳量<0.25%及抗拉强度小于650N/mm2的材料为主。例如冷轧钢 SPCC (JIS) 或1010 (SAE)。

对金属材料的冲压性能要求:

1﹑具有良好的机械性能及较大的变形能力。

金属材料的机械性能是指抗拉强度、屈服强度、延伸率、硬度﹑塑性应 变比。

2﹑具有理想的金相组织结构

金相组织是材料的微观质量特征。它的主要标志是: 渗碳体或碳化物的球化程度。

冲压材料的特性与成形

1.1冲压材料性能表

1.2冲压材料特征参数:

抗拉强度是计算冲压加工力的基本要素。所谓抗拉强度是实际拉伸试验过程中之最大荷重值除以试验片开始时的断面积。即:sb = PMAX / A (kg/mm2 )

当屈服强度和抗拉强度高时,冲压成形力大,成形的难度加大,而且还会降低模具的寿命。如果屈服强度高,在冲压成形结束后,冲压件由模具内脱离并卸载时,弹性恢复的变形也大,影响冲压件的尺寸精度。

一般的计算中,冲压材料的剪切应力 t = 0.8 * 抗拉强度sb

注:1 Pa = 1 N/m2 = 1x10-6 N/mm2 = 1.01972x10-7 Kg/mm2

②﹑延伸率

在材料拉伸试验中,试样拉断后,由于保留了塑性变形,试样长度由原来的L变成了L1,用百分比表示的比值

d =(L1-L)/ L

就称为延伸率。均匀延伸率dU是在单向拉伸过程中出现局部缩颈时,也就是发生拉伸过程失稳定时的延伸率。如果板材的延伸率大,对所有的伸长类冲压成形都是有利的。当延伸率大时,胀形、翻边的成形极限也大。因此,大多数的优质冲压钢都具有较高的均匀延伸率。

③﹑加工硬化值(n)

不锈钢板的引伸成形要分几次加工才能达到产品形状,在引伸加工过程中会使材料产生硬化现象,这种现象一般称为加工硬化。加工硬化之生成原因为材料承受一塑性变形后,在于同方向施加负荷力将使其降伏点上升,从而增加必要的变形抵抗以对抗塑性变形之再产生。降伏点是超越弹性变形区域而产生永久变形的初始点,由拉伸试验知,是荷重不增加而伸展行为仍进行的点。

加工硬化系数之高低意味著什么现象呢?

n值高的材料会发生下列的行为:

(1) 继续进行加工会造成材料硬化、伸长量减少而使加工不易。

(2) 继续进行加工将会抑制局部变形,得到一致的变形。

n值低的材料会发生下列的行为:

继续进行加工会引起局部的变形,弱的部份甚至破断。

因此,伸长类成形要求板材具有较大的n值。

④﹑塑性应变比(r)

它是表示板材各向异性性能的参数。由于板材在制造过程中要经历轧制与退火等工艺,结果使板材形成结晶方位趋于一致的织构组织,在宏观上表现为各向异性,即在不同的方向上板材的性能有一定的差异。在生产中用r值来表示板材的各向异性,其值等于对数应变表示的宽度应变eb与厚度方向应变et之比,即: r=eb/et=ln(b/b0)/ln(t/t0)

r值主要影响拉深性能,板材的r值大,它的拉深性能也好。

⑤﹑硬度(Hardness)

一般说来,硬度越低,塑性越好。但是,材料的硬度偏高,若碳化物球化率在90%以上,也能得到良好的冲裁面。反之,材料的硬度偏低,但球化不充分,也会使冲裁面撕裂。因此,硬度是判断是否适合剪切的宏观指标,而金属组织(碳化物的均匀性和球化程度)是判断是否适合冲裁的微观指标。

⑥﹑球化度(Spheroidizing)

低碳钢的组织是以软的铁素体为基体与少量的珠光体组成。而珠光体是铁素体与渗碳体的细密的混合物,其中渗碳体含量占12%。铁素体具有很好的塑性,而渗碳体则硬而脆。从同一含碳量的材料来看,通过随着碳化物的球化,可提高塑性而改善冲裁面的质量。

注:什么是球化退火?

目的在于使网状二次渗碳体及珠光体中的层状渗碳体发生球化变成粒状的渗碳体,降低材料硬度,改善切削加工性,并为淬火作好准备。由于珠光体本身较硬,而且由于网状二次渗碳体的存在,更增加了钢的硬度和脆性。这不仅给切削加工带来困难,而且还会引起淬火时产生变形和开裂。

⑦﹑时效割裂

在对某些板材(如不锈钢板与黄铜板等)进行拉深成形时,由于拉深时形成的残余应力的作用,在拉深后会在圆筒形件的侧壁产生纵向开裂现象。这种开裂现象可能在脱模后立即产生,也可能在放置一段时间之后,或在冲压件使用过程当中发生,故称为时效割裂。

⑧﹑圆筒深引伸试验(LDR值)

圆筒深引伸试验法是评估金属薄板深引伸性试验法中最基本的方法之一。此试验之目的在于求得金属材料的引伸界限比(Limit Drawing Ratio,简称LDR),LDR值越大表示该材料具有越好的引伸性。LDR=D/dp,其中:D表示胚料直径,dp表示冲头(引伸制品)直径。LDR值与塑性应变比r值呈正向关系,即r值大的材料其深引伸性也较佳。

⑨﹑锥皿试验(CCV值)

锥皿试验法是评估金属薄板(厚度0.5~1.6mm)成形性试验法中最基本的方法之一。CCV值可作为深引伸与拉伸之复合成形性之评估试验,其与加工硬化值系及塑性应变比有密切关系。

常用钢材号介绍

3.1﹑日本钢材(JIS系列)的牌号中普通结构钢主要由三部分组成:

第一部分表示材质,如:S(Steel)表示钢,F(Ferrum)表示铁;

第二部分表示不同的形状、种类、用途,

如:P(Plate)表示板,T(Tube)表示管,K(Kogu) 表示工具;

第三部分表示特征数字,一般为最低抗拉强度。

如:SS400——第一个S表示钢(Steel),第二个S表示“结构”(Structure),400为下 限抗拉强度400MPa,整体表示抗拉强度为400 MPa的普通结构钢。

3.2﹑SPHC——首位S为钢Steel的缩写,P为板Plate的缩写,H为热Heat的缩写,C商业Commercial的缩写,整体表示一般用热轧钢板及钢带。

3.3﹑SPHD——表示冲压用热轧钢板及钢带。

3.4、SPHE——表示深冲用热轧钢板及钢带。

3.5、SPCC——表示一般用冷轧碳素钢薄板及钢带,相当于中国Q195-215A牌号。其中第三个字母C为冷Cold的缩写。需保证抗拉试验时,在牌号末尾加T为SPCCT。

3.6、SPCD——表示冲压用冷轧碳素钢薄板及钢带,相当于中国08AL(13237)优质碳素结构钢。

3.7、SPCE——表示深冲用冷轧碳素钢薄板及钢带,相当于中国08AL(5213)深冲钢。需保证非时效性时,在牌号末尾加N为SPCEN。

冷轧碳素钢薄板及钢带调质代号:退火状态为A,标准调质为S,1/8硬为8,1/4硬为4,1/2硬为2,硬为1。

表面加工代号:无光泽精轧为D,光亮精轧为B。如SPCC-SD表示标准调质、无光泽精轧的一般用冷轧碳素薄板。再如SPCCT-SB表示标准调质、光亮加工,要求保证机械性能的冷轧碳素薄板。

3.8、JIS机械结构用钢牌号表示方法为:

S+含碳量+字母代号(C、CK),其中含碳量用中间值×100表示,字母C:表示碳 K:表示渗碳用钢。如碳结卷板S20C其含碳量为0.18-0.23%。

常用冲压材料介绍

4.1﹑热轧钢

热轧钢是一种优质碳素结构钢,含碳量约0.10%~0.15%,属于低碳钢。

冲压用的热轧钢有下列三种:

(1) 、SPHC--是热轧钢的代表钢种。

(2) 、SPHD--与SPHC相比,其拉伸性较佳。

(3) 、SPHE--与SPHC相比,其拉伸性更佳。

分类及性能介绍:

4.2﹑冷轧钢

冷轧钢亦是一种优质碳素结构钢,含碳量约0.08%~0.12%,属于低碳钢。

冲压用的冷轧钢有下列三种:

(1) 、SPCC--是冷轧钢的代表钢种。

(2) 、SPCD--与SPCC相比,其拉伸性较佳。

(3) 、SPCE--与SPCC相比,其拉伸性更佳。

分类及性能介绍:

4.3﹑不锈钢

不锈钢是指含铬量达到11%以上高合金钢,其主要的特征是耐腐蚀性及耐热性,具有不锈性与 表面光辉性。在冲压成形中应用的不锈钢有铁素体不锈钢、奥氏体不锈钢以及马氏体不锈钢。

铁素体不锈钢的冲压性能接近于冷轧钢板,在这种不锈钢板生产过程中也可利用热轧、冷轧与退火的方法获得织构组织,使r值达到1.2~1.8左右,因此具有良好的拉深性能。但是它的硬化指数约为0.2左右,伸长率约为0.25~0.3左右,均小于奥氏体不锈钢,所以它的伸长类冲压成形性能较差。

不锈钢具有下列特性:

(1) 硬度及抗拉强度高于软钢板的2倍 (2) 热传导性不佳,热膨胀系数大

(3) 深引伸加工会产生时效割裂 (4) 表面容易被模具刮伤

不锈钢牌号表示的含义:S U S ***-C S P

4.4﹑铜及铜合金

铜及铜合金依其制造方法可分为伸铜材(展伸铜)及铸造材两大类; 铜及铜合金之代表性特征如下:

(1) 热传导性好,导电性佳; (2) 切削加工性好; (3) 具有非磁性功能;

(4) 低温下不产生脆化现象; (5) 耐腐蚀; (6) 弹性好;(7) 色调美观,易镀锡;

分类及性能介绍:

4.5、铝及铝合金

铝及铝合金材料依其制造成形过程可分为伸展材及铸造材两大类。伸展材料又有热处理合金与非热处理合金之区别,主要在于控制材料强度的方法不同。非热处理合金是以调整冷加工程度大小来控制材料的强度,一般而言,冷加工程度越高则材料强度越高。热处理合金是以淬火、时效处理等热处理手段来获得所需要的强度。

基本特征:

(1):美丽的外观 (2):强度重量比大 (3):优良的加工性 (4):综合性佳

(5):耐蚀性 (6):低温特性 (7):导电性佳 (8):热传导性佳

(9):反射性佳 (10):非磁性 (11):无毒性 (12):回收

分类:

各位数字所代表的含义:

第一位数:表示主要添加合金元素

1:纯铝

2:主要添加合金元素为铜

3:主要添加合金元素为锰或锰与镁

4:主要添加合金元素为矽

5:主要添加合金元素为镁

6:主要添加合金元素为矽与镁

7:主要添加合金元素为锌与镁

8:不属于上列合金系的新合金

第二位数:表示原合金中主要添加合金元素含量或杂质成分含量经修改的合金

0:表示原合金

1:表示原合金成分经第一次修改

2:表示原合金成分经第二次修改

第三及第四位数:

纯铝:表示纯度亦即最低含铝量

合金:表示个别合金的代号

”后面的 Hn或Tn表示加工硬化的状态或热处理状态的炼度符号

-Hn:表示非热处理合金的炼度符号

-Tn:表示热处理合金的炼度符号

分类及性能介绍:

对于本文有不了解 不明白的地方,欢迎在下方评论区探讨!

如果想系统学习模具设计技术的,可以关注小编!私信:666

校园网——收录全国各地学校网站。
网站简介 | 联系方式 | 网站地图 CopyRight 2014-2023 www.15033.cn, Inc. All Rights Reserved icp备案号 闽ICP备2023005518号