首页 > 作文 > 话题作文 > 其他话题

数学发现作文

admin 其他话题 2021-06-04 08:18:00 发现作文

  在日常的学习、工作、生活中,大家都有写作文的经历,对作文很是熟悉吧,作文根据写作时限的不同可以分为限时作文和非限时作文。还是对作文一筹莫展吗?下面是小编整理的数学发现作文10篇,仅供参考,希望能够帮助到大家。

数学发现作文 篇1

  今天,我读了《高斯发现的数学原理》这篇文章。文章讲了,高斯出生在一个贫穷的家庭,在他还不会讲话的时就自己计算。三岁那年的一个晚上,他看着父亲算工钱时,还纠正了父亲计算的错误。

  教高斯数学的老师是一个从城里来的人,觉得自己在一个穷乡僻壤教几个小猢狲读书真是大材小用。这一天数学教师正好情绪低落,让同学们做作业。同学们看到老师抑郁的脸孔,心里害怕起来,于是就认真的作业。还不到半小时,高斯就把作业做完了,送给老师检查。

  老师头也不抬地说:"错的!"高斯非说自己的是对的。老师接过来一看,高斯的计算不仅正确,而且他还发现了计算简便快捷的数学原理。

  跟高斯比起来,我感到脸红。每当在学习中有了困难和问题时,我很少换一种方法去思考,而总是直接问家长或老师。

  在数学家庭作业中,我有一题不会做,可是我想都没想,就说我不会做,就去问妈妈。妈妈耐心地给我讲解,可是我只是听懂写了上去,却没有换一个角度去思考问题。我现在觉得很惭愧。

  我想:"如果,我只是听懂了,就写了上去,但却没有深入的去分析,去理解、去思考这道题。虽然,这道题改下来是正确的,但如果是仅仅是这样的话,过了些日子可能就忘记了解题的方法。如果认真地分析思考了,肯定是不会忘记的。

  通过读高斯的故事,我深深地体会到勤思考、善观察、多角度的去思考问题的重要性。现在很多学生在学数学的时候,只会照葫芦画瓢,不能领会其中的奥妙,不能举一反三,不能灵活运用最简单的方法。高斯却给了我们一个非常好的榜样。

数学发现作文 篇2

  在数学学习中,有许许多多的发现,我们一定要留心观察生活中的数学、课堂中的数学。

  在一次基础训练上的题目中,我发现怎样找三个连续的自然数且都是合数。我在找的时候想了一会儿。双数肯定是合数,就要看奇数了。“3”,有时行有时不行;“7”,太少了;“5”,应该行,试试看:“14”、“15”、“16”,哈!是对的!于是我有了一个发现,在找三个连续自然数且都是合数时,它们必须是两位数或更多位数,个位上分别是“4”、“5”、“6”,例如:24、25、26;34、35、36;44、45、46老师说:“金诚,你这个可以是金诚猜想了。”

  在一道题目里,2/20=5/{},这道题难倒不少同学。其实很简单,2/5=2.5,扩大了2.5倍,2.5x20=50,所以分母是50。在遇到这种题目,我们并不要总是乘整数,还可以乘小数。

  我这些小发现还只是冰山一角,同学们,我们要加油哦!

数学发现作文 篇3

  “它们有什么关系呢?它们之间肯定有内在的联系!”在数学课上,我抓耳挠腮。今天老师教的知识是:求两个数的最小公倍数。也许你会觉得奇怪,这知识很简单,只要求出它们最小公倍数就行了,这对我来说也是小菜一碟。难的是,我怎样才能即快速又准确地求出两个数的最小公倍数.

  想着,想着。善于思考的我马上找出了“破绽”。从相邻的两个数入手。不想不知道,想了吓一跳。在相邻的两个数中我发现了很多的规律。比如:两个连续奇数的最小公倍数就是它们的积;两个连续偶数的最小公倍数就是它们的积除以2;两个连续自然数的最小公倍数就是它们的积......一条条规律不知不觉的被我“挖掘”出来。我喜出望外,决定举手报告老师。转念一想,又觉得这些规律不完善。如:9和16用这些规律就行不通了。我百思不得其解,又有点儿不善罢甘休。一下课,我再次投入紧张的思考中,山重水复疑无路,柳暗花明又一村。从最大的公因数找起,我茅塞顿开。把10和16的最大公因数找出,再用这两个数的积除以它们的最大公倍数,就可以求出它们的最小公倍数了。经过半小时的“奋战”,功夫不负有心人,我想出的规律经数学老师验证是可行的。我不禁欢呼雀跃:有付出就有收获啊!

数学发现作文 篇4

  对于同学们来说,“5”并不陌生,可你发现了任何数与“5”相乘的规律吗?

  我想对于整数乘5来说,比较简单。但数大了的话,可能就不太容易了。不妨试试我的方法--一乘以5,等于这个数乘以10再除以2。虽然有些麻烦,但不容易算错,还能口算。既提高了准确率,又节省了时间。

  小数与5相乘时,用这种方法也不错。例如1.6×5,一般同学要列竖式,而用我这方法:1.6×10÷2,先用小数点移位法得出16,然后一下就算出1.6×5=8。

  这种办法不仅对5有用,而且,乘以50、500……也可以。乘50则是乘以100除以2,乘500则是那个数乘以1000除以2……

  如果是乘以0.5,则是缩小2倍,乘以0.05则缩小20倍,依次类推。

  我的小窍门还不错吧!

数学发现作文 篇5

  我发现自己很讨厌数学。可能是我的字典里没有“数学”这个词吧!

  每次,上数学课,我都想干点别的——画个画、看本书,或是偷偷做会儿语文作业。有时我会责问自己:你怎么能这样?可转念一想:切,本喵才不想在无聊、乏味的数学课上浪费时间呢!

  我为什么这么讨厌数学呢?这可要从二年级的一次考试说起。那次,我考了81分!这是我历史上最低的一次分数。接下来,我就完全放弃了它。

  当我看到试卷时,真想将它撕了——计算9分完全扣,应用题也没几个对。试卷上画满了红叉和红圈,它们像魔爪,向我伸出手。我不敢想象妈妈接到试卷时的眼睛。

  放学回家,我十分乖巧地跑到书房,写起作业。

  “宝,数学考几分呀?”妈妈的眼睛充满了希望,仿佛在盼着我的好成绩。

  因为之前,我的成绩从不低于90分。

  “呃……”我咬着嘴唇,扯着衣角,硬着头皮说,“8……81分。”

  “what?”老妈惊讶得嘴里飞出了英语,“你再说一遍!”

  我小声地说:“81分!”

  “啊!”妈妈疯一般大叫,“你考了81分。”

  老妈喘了口大气接着说:“呵,81分,你还进家门,给我死房间里去!”

  我灰溜溜跑回了房间。

  “做题目,做练习,做试卷!”老妈大喊。

  十分钟后。

  “ok,ok!给你老娘看看。”妈妈说。她正努力平息下来。

  “全错啊,数学你是怎么学的?”妈妈指着我的鼻子,破口大骂。

  那天我做试卷做到了十一点!无数的符号和数字在脑子里打仗,直到一片焦土。从此,数学这个词在我心中逐渐淡去,淡去……

  后来,一提到数学,我就难受。假如让我写一张数学试卷的话,那我宁愿写100篇,也不会去写一题数学题。那作业怎么办呢?哈哈,我一个中午,去教室各个角落“访问”一下。完美,一面10分的作业就诞生了!

  每次数学考试,我都会考到怀疑人生!我怀疑自己是从文科星球掉下来的小仙女,对理科一窍不通!不,其实我本来是理科的,可转了户口,成了文科的了。

  一直到现在,我的数学依然很差。我怀疑我的字典里真的没有“数学”两个字。

数学发现作文 篇6

  语文,有它的语言美、表现美;物理,有它的简约美、对称美;英语,有它的发音美、句式美······各个学科都有其不同的美,而我终于发现了数学的美。

  第一美·构图美

  数学当中的旋转、平移、对称总能把一个简单的图形变得多样,一个图形就可能有几十种不同的变化。甲秀楼是贵阳乃至贵州的名楼,它的构造是利用了轴对称的数学知识;北京故宫博物院中外闻名,气势宏伟,磅礴壮观,可又有谁想到它也是利用了轴对称构造而成的呢?

  第二美·逻辑美

  数学中的几何证明题,虽然在生活中没有广泛的使用,但当你解出一道道证明题时,当你看着你写的一长串证明过程时,你内心是自豪的,充斥着成就感。一道证明题可以有多种解法,有的稍简便,有的较复杂。在证一道证明题时,也有多种切入点——从第一个条件开始,从问题来反推,从······

  第三美·计算美

  数学在开始无非就是一个学计算而又多样性的学科。它的计算由简单到复杂,再到后来引进的各种简便计算,平时要写好几步又易错的题目,在利用交换律、结合律、分配律、平方差公式和完全平方公式等计算方法后,使计算效率高而准,还节省了不少学习时间分配到其他学科上。

  每个学科都有各自的特点,各自的美。它们的美无处不在,或许在生活中,或许在学习上。但无论它们的美在哪,都可以确定一点——它们影响着你的一生。

数学发现作文 篇7

  “巧算24点”是一种数学游戏,正如下棋一样是一种人们喜闻乐见的娱乐活动。它以自己独具的数学魅力和丰富的内涵逐渐被越来越多的人所接受。这种游戏方式简单易学,能健脑益智,是一项极为有益的活动。

  24点的游戏规则是去掉一副牌大小王,每次出4张牌,通过加减乘除和括号组成算式,求得24,其中A-K代表数字1-13。这个游戏看似简单,然而认真玩下来就会发现有很多技巧,自己的感悟颇深。我用1、2、3、4这四个数字总结了算24点的心得体会。

  “1”,在扑克牌里是“A”,我觉得它不仅是一个简单的数字,更是胜利的象征。它代表了第一和优秀,就像在24点比赛里,谁计算得又快又准,谁就是小组的NO.1。24点不仅考验了我们的数字运算能力,更增强了我们争夺第一的勇气。

  “2”,是一个偶数。任何数和偶数相乘的结果都是偶数。当老师课前布置24点游戏规则的时候,我就在想为什么会是“24”呢?认真思考后才发现24是偶数,而且在1-13中,24包含1、2、3、4、6、8、12这些约数,而其他数字像25只有1、5两个约数,22只有1、2、11三个约数,所以组合方式变少,无解的.机会就多了,比赛的乐趣就小了。我想这是为什么是“24”点,而不是“22”、“23”或“25”点的原因之吧!

  “3”,在我国古代代表的是众多的意思。孔子说:“三人行,必有我师”。在算24点的活动里,我深深地体会到了这一点。有几道题,我以为根本就是无解,而有的同学却能很快地算出。通过观察他们的算法,发现其实可以换一种思考方法来求解。正是这种方法让我在后面的比赛中可以迅速算出答案,如鱼得水。这让我明白有些问题不能因为自己不会就轻言放弃,也许换一种思路,或者请教一下同学和老师,问题就会迎刃而解。

  “4”,是代表4个人一组,用4张牌通过四则运算玩24点,是比赛的规则。而我总是在想,如果是5个人玩我还会不会赢得比赛呢?如果是发5张、6张、7张牌,出现无解的机会会不会少一些呢?我现在只会加减乘除四则运算,如果我懂更多的运算法则,会不会想出更多的解法呢?后来我回家上网查找24点游戏资料,得知通过计算机分析,在52张牌中任意抽取4张就会有1820种不同的组合,其中有458种组合算不出24点;而5张牌无解的总数只有80; 在6张牌的情况下, 4905种不同的组合方式仅有3种组合是无解的:到了7张牌的情况下,所有组合方式(10890种)都有解。

  这是我在24点游戏中的一些感触,虽然只是一个普通的算术游戏,其中却蕴含了那么多的道理。如果我们认真分析数学里的道理,我们将会发现更多的1234。

  “巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力都很有帮助。

数学发现作文 篇8

  “142857、285714、428571……”你知道我在干什么吗?告诉你吧,我在研究一个数学中的新发现呢! 暑假里的一天下午,我在研究奥数老师讲的一个六位数:142857.为什么要研究它呢?这可是有原因的。不信,你看看开头的几个数,它们都是142857的倍数。就让我算给你看吧:142857乘1=142857,

  142857乘2=285714,142857乘3=428571,142857乘4=571428,142857乘5=714285,142857乘6=857142,142857乘7=999999.是不是很神奇呢?142857乘1到6的结果都是由1、4、2、8、5、7这六个数组成的,读起来也很顺口、很好听,奥数老师要求我们要记住它们,现在,我已经记住了,而且背得滚瓜烂熟,写这篇文章的时候都没有那计算器一个一个的算,而是一口气写出来的。

  我真高兴能从奥数老师那里学来这个新发现,我相信,数学学起来不会很难,只要多发现、多观察,就会找到很多诀窍,学起来也会轻松许多,并且会觉得数学很有趣,就像我的感受一样呢!

数学发现作文 篇9

  生活中的数学,自从学了数学以后,我才发现生活中处处都离不开数学,比如,每个周末,我都会帮爸爸妈妈,以及妹妹买早餐,刚开始对钱的多少一无所知?直到后来上了小学,我才知道,原来爸妈给我20元钱,我就可以给爸爸买一份蒸面5元,我一杯豆浆2元,一个包子2元,妹妹一个包子1元等等,算下来商家还要给我找10元。这次我用的是减法20减5减4减1等于10元,每次爸爸都会考验我,这次问我的问题是,我给你4块去给妹妹买包子,再给你五块去给我买份热面皮,一共给你了几块,哈哈这次难不到我了,因为我用了加法4加5等于9元。

数学发现作文 篇10

  周末我写完作业后,爸爸带我和妹妹出去玩,来到妹妹可以坐摇摇的地方,爸爸换了6个硬币,我用了2个,妹妹用了3个,最后爸爸问我还剩下几个呢?我在心中算了算,6个减掉2个再减掉3个,应该是6-2-3=1个,爸爸夸我很聪明。

版权声明

本站文章收集于互联网,仅代表原作者观点,不代表本站立场,文章仅供学习观摩,请勿用于任何商业用途。
如有侵权请联系邮箱tuxing@rediffmail.com,我们将及时处理。本文地址:https://www.wuliandi.com/zuowen/huatizuowen/qitahuati/202202/2496011.html

中学网 - 让教育更简单

https://www.wuliandi.com/

蜀ICP备19007375号

Powered By 中学网版权所有