最新发布
当前位置: 校园网 > 知识百科

光电鼠标原理电路图(求鼠标电路中的光电传感器电路图)

更新时间:2023-06-18 16:38责任编辑:谭小强关键词:原理,电路,鼠标,电路图,传感器

求鼠标电路中的光电传感器电路图

滚轮鼠标有两对光电传感器,以轮间隙的转动来实现光通路的通断,有人利用它来代换录像机里面的光电传感器,具体应用需查清器件的型号和功能引脚。光电鼠标一般是用一只高亮度红色发光二极管做光源,经透镜反射后传到感应芯片上(为一集成电路,上面有孔的那个),在集成电路内部实现光电转换。

光电鼠标原理电路图

光电鼠标的工作原理光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍:光学感应器光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。光电鼠标的控制芯片控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。光学透镜组件光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。发光二极管光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。通常,光电鼠标采用的发光二极管(如图7)是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。轻触式按键没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。方正光电鼠标的PCB上共焊有三个轻触式按键(图8)。除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个方正光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。当我们卸下翻页滚轮之后,可以看到滚轮位置上,“藏”有一对光电“发射/接收”装置。“滚轮”上带有栅格,由于栅格能够间隔的“阻断”这对光电“发射/接收”装置的光路,这样便能产生翻页脉冲信号,此脉冲信号经过控制芯片传送给Windows操作系统,便可以产生翻页动作了。

鼠标是怎样的内部构造原理

光电鼠标的内部构造工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管(如图7)是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。 轻触式按键 没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。方正光电鼠标的PCB上共焊有三个轻触式按键(图8)。除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个方正光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。 当我们卸下翻页滚轮之后,可以看到滚轮位置上,“藏”有一对光电“发射/接收”装置。“滚轮”上带有栅格,由于栅格能够间隔的“阻断”这对光电“发射/接收”装置的光路,这样便能产生翻页脉冲信号,此脉冲信号经过控制芯片传送给Windows操作系统,便可以产生翻页动作了。

光电鼠标的工作原理是什么

光电鼠标的工作原理 光电鼠标与机械式鼠标最大的不同之处在于其定位方式不同。 光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜,传输到一个光感应器件(微成像器)内成像。这样,当光电鼠标移动时,其移动轨迹便会被记录为一组高速拍摄的连贯图像。最后利用光电鼠标内部的一块专用图像分析芯片(DSP,即数字微处理器)对移动轨迹上摄取的一系列图像进行分析处理,通过对这些图像上特征点位置的变化进行分析,来判断鼠标的移动方向和移动距离,从而完成光标的定位。 光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍: 光学感应器 光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。 光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。 光学透镜组件 光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。 发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管(如图7)是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。 轻触式按键 没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。方正光电鼠标的PCB上共焊有三个轻触式按键(图8)。除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个方正光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。 当我们卸下翻页滚轮之后,可以看到滚轮位置上,“藏”有一对光电“发射/接收”装置。“滚轮”上带有栅格,由于栅格能够间隔的“阻断”这对光电“发射/接收”装置的光路,这样便能产生翻页脉冲信号,此脉冲信号经过控制芯片传送给Windows操作系统,便可以产生翻页动作了。 除了以上这些,光电鼠标还包括些什么呢?它还包括连接线、PS/2或USB接口、外壳等。由于这几个部分与机械式鼠标没有多大分别,因此,这里就不再说明了!参考资料:http://article.pchome.net/00/00/89/22/

光电鼠标原理

光电鼠标的原理很简单:其使用的是光眼技术,这是一种数字光电技术,较之以往需要专用鼠标垫的光电鼠标完全是一种全新的技术突破。光电感应装置每秒发射和接收1500次信号,再配合18MIPS(每秒处理1800万条指令)的CPU,实现精准、快速的定位和指令传输。另一优势在于光眼技术摒弃了上一代光电鼠标需要专用鼠标板的束缚,可在任何不反光的物体表面使用,而且最大的优势:定位精确。随着IT界的发展,光电鼠标也不仅仅局限在老式的有线鼠标,逐渐发展成多功能的无线鼠标等。一般来说,光学鼠标的起步就是很高的,也就是说,大部分光学鼠标均是人体工程学设计,这样可以让消费者拥有一个更合适的消费理由。 第二代光电鼠标的原理说来其实很简单:它采用了一种光眼技术,也就是数字光电技术,利用红外线照射鼠标所在物体的表面,然后每隔一定的时间(几毫秒)就做一次快照,接着分析处理两次图片的特性,来决定坐标的移动方向及数值。由于需要对图片进行扫描才能确定鼠标的位移,因此这个扫描的频率就成为衡量光电鼠标的一项重要参数。而这款飞狐鼠标由于采用了明基BenQ独特的“微型光学定位系统”,每秒钟能够发射1500次感光信号来扫描物体表面,取得图像后通过DSP数字信号处理器将每个细微的移动方向与距离迅速而准确地回传。飞狐还拥有高达800DPI的分辨率,使得光标定位更加精准,高速的传感器也可以避免指针的抖动和不规则移动现象,提高瞄准精度。让我们在各种操作环境下都能得心应手。 鼠标的光学传感器对鼠标被放置的表面进行扫描,并以1500次/秒的频率捕捉图像,进行对比,从而确定鼠标的定位。传统光学鼠标使用的光学芯片扫描次数普遍为1500次/秒(所谓扫描次数,即光学定位芯片每秒采集和处理图像的数量),最高只可以追踪14~18英寸/秒的移动速度。鼠标移动速度如果超出此范围,则可能发生光标无法准确定位的情况。而用户使用电脑时,鼠标的移动速度最高可达到30英寸/秒,尤其是在如CS一类的FPS游戏中,这就会产生前文所述的鼠标突然失控的问题。

光标物理形成的原理

鼠标的定位原理光电鼠标是通过红外线或者激光检测鼠标的位移,将位移信号转换为电脉冲信号,通过程序的处理控制屏幕中光标箭头的移动。一.鼠标的结构光学鼠标主要由四部分的核心组件构成,分别是发光二极管、透镜组件、光学引擎以及控制芯片组成。光电鼠标的控制芯片 控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”,实现与主板USB接口之间的桥接。当然,它也具备了一块控制芯片所应该具备的控制、传输、协调等功能。 这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。 光学感应器 光学感应器是光电鼠标的核心。 光学感应器主要由CMOS感光块(低档摄像头上采用的感光元件)和DSP组成。CMOS感光块负责采集、接收由鼠标底部光学透镜传递过来的光线(并同步成像),然后CMOS感光块会将一帧帧生成的图像交由其内部的DSP进行运算和比较,通过图像的比较,便可实现鼠标所在位置的定位工作。 光学透镜组件光学透镜组件被放在光电鼠标的底部位置,从图中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。 其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。 圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头。 不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。发光二极管 光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。 通常,光电鼠标采用的发光二极管是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。二.鼠标的原理光电鼠标的工作原理是:在光电鼠标内部有一个发光二极管,通过该发光二极管发出的光线,照亮光电鼠标底部表面(这就是为什么鼠标底部总会发光的原因)。然后将光电鼠标底部表面反射回的一部分光线,经过一组光学透镜 传输到一个光感应器件(微成像器)内成像现在,翻过一只发红光的光学鼠标,您都可以看到一个小凹坑,里面有一个小棱镜和一个透镜。工作时,从棱镜中会发出一束很强的红色光线照射到桌面上,然后通过桌面不同颜色或凹凸点的运动和反射,来判断鼠标的运动。当鼠标移动的时候,成像传感器录得连续的图案,然后通过“数字信号处理器”(DSP)对每张图片的前后对比分析处理,以判断鼠标移动的方向以及位移,从而得出鼠标x, y方向的移动数值。再通过SPI传给鼠标的微型控制单元。鼠标的处理器对这些数值处理之后,传给电脑主机。传统的光电鼠标采样频率约为3000 Frames/sec(帧/秒),也就是说它在一秒钟内只能采集和处理3000张图像。根据所讲述的光学鼠标工作原理,我们可以了解到,影响鼠标性能的主要因素有哪些。 第一,成像传感器。成像的质量高低,直接影响下面的数据的进一步加工处理。第二,第二,DSP处理器。DSP处理器输出的x,y轴数据流,影响鼠标的移动和定位性能。 第三,SPI于MCU之间的配合。数据的传输具有一定的时间周期性(称为数据回报率),而且它们之间的周期也有所不同,SPI主要有四种工作模式,另外鼠标采用不同的MCU,与电脑之间的传输频率也会有所不同,例如125MHZ、8毫秒;500MHz,2毫秒,我们可以简单的认为MCU可以每8毫秒向电脑发送一次数据,因此数据从SPI传送到MCU,以及从MCU传输到主机电脑,传输时间上的配合尤为重要。激光鼠标激光鼠标其实也是光电鼠标,只不过是用激光代替了普通的LED光.好处是可以通过更多的表面,因为激光是 Coherent ?Light(相干光),几乎单一的波长,即使经过长距离的传播依然能保持其强度和波形;而LED 光则是Incoherent Light(非相干光)。激光鼠标传感器获得影像的过程是根据,激光照射在物体表面所产生的干涉条纹而形成的光斑点反射到传感器上获得的,而传统的光学鼠标是通过照射粗糙的表面所产生的阴影来获得。因此激光能对表面的图像产生更大的反差,从而使得“CMOS成像传感器”得到的图像更容易辨别,提高鼠标的定位精准性。从光路上来说,激光鼠标较之普通光电鼠标至少有两大不同:首先,激光鼠的光学传感器并不像传统光电鼠那样,位于照明区域的正上方,而是在照明区域的侧面,我们知道,在光线尤其是相干光反射时,入射角等于反射角,因此,光线最强的区域在侧面角度与激光发射角度相通的位置上。而激光鼠标正是将光学传感器设置在这一位置,这样,传感器可接受到更明亮的图像,识别判断自然更精确。其次,激光鼠标使用的是点成像,也就是说,激光在汇聚后,只照明一个极小的区域,而传感器的透镜,也只汇聚识别这个极小区域的图像。这相对于让鼠标用放大镜看桌面,不仅可以极大的提高鼠标的分辨率,定位精度较之面成像的传统光学引擎,也高了不少。

光电鼠标的工作原理是什么它和鼠标垫的关系

先说原理: ???光学鼠标的工作原理是,在鼠标内部有一个发光二极管,二极管发光照亮鼠标底部的接触面,同时接触面会反射回一部分光线,反射光通过一组光学透镜后,在一个CMOS传感器内成像。 ?当鼠标移动的时候,移动轨迹便会被记录为一组高速拍摄的连贯图象,而经过鼠标内部有一块专用的DSP图象分析芯片,对移动轨迹上摄取的一系列图象进行分析处理,通过对这些图象上特征点位置的变化进行分析,来判断鼠标的移动方向和距离,从而完成光标的定位。光电鼠标通常由以下部分组成:光学感应器、光学透镜、发光二极管、接口微处理器、轻触式按键、滚轮、连线、PS/2或USB接口、外壳等。下面分别进行介绍:光学感应器光学感应器是光电鼠标的核心,目前能够生产光学感应器的厂家只有安捷伦、微软和罗技三家公司。其中,安捷伦公司的光学感应器使用十分广泛,除了微软的全部和罗技的部分光电鼠标之外,其他的光电鼠标基本上都采用了安捷伦公司的光学感应器。光电鼠标的控制芯片控制芯片负责协调光电鼠标中各元器件的工作,并与外部电路进行沟通(桥接)及各种信号的传送和收取。我们可以将其理解成是光电鼠标中的“管家婆”。这里有一个非常重要的概念大家应该知道,就是dpi对鼠标定位的影响。dpi是它用来衡量鼠标每移动一英寸所能检测出的点数,dpi越小,用来定位的点数就越少,定位精度就低;dpi越大,用来定位点数就多,定位精度就高。通常情况下,传统机械式鼠标的扫描精度都在200dpi以下,而光电鼠标则能达到400甚至800dpi,这就是为什么光电鼠标在定位精度上能够轻松超过机械式鼠标的主要原因。光学透镜组件光学透镜组件被放在光电鼠标的底部位置,从图5中可以清楚地看到,光学透镜组件由一个棱光镜和一个圆形透镜组成。其中,棱光镜负责将发光二极管发出的光线传送至鼠标的底部,并予以照亮。圆形透镜则相当于一台摄像机的镜头,这个镜头负责将已经被照亮的鼠标底部图像传送至光学感应器底部的小孔中。通过观看光电鼠标的背面外壳,我们可以看出圆形透镜很像一个摄像头通过试验,笔者得出结论:不管是阻断棱光镜还是圆形透镜的光路,均会立即导致光电鼠标“失明”。其结果就是光电鼠标无法进行定位,由此可见光学透镜组件的重要性。发光二极管光学感应器要对缺少光线的鼠标底部进行连续的“摄像”,自然少不了“摄影灯”的支援。否则,从鼠标底部摄到的图像将是一片黑暗,黑暗的图像无法进行比较,当然更无法进行光学定位了。通常,光电鼠标采用的发光二极管(如图7)是红色的(也有部分是蓝色的),且是高亮的(为了获得足够的光照度)。发光二极管发出的红色光线,一部分通过鼠标底部的光学透镜(即其中的棱镜)来照亮鼠标底部;另一部分则直接传到了光学感应器的正面。用一句话概括来说,发光二极管的作用就是产生光电鼠标工作时所需要的光源。轻触式按键没有按键的鼠标是不敢想象的,因而再普通的光电鼠标上至少也会有两个轻触式按键。方正光电鼠标的PCB上共焊有三个轻触式按键(图8)。除了左键、右键之外,中键被赋给了翻页滚轮。高级的鼠标通常带有X、Y两个翻页滚轮,而大多数光电鼠标还是像这个方正光电鼠标一样,仅带了一个翻页滚轮。翻页滚轮上、下滚动时,会使正在观看的“文档”或“网页”上下滚动。而当滚轮按下时,则会使PCB上的“中键”产生作用。注意:“中键”产生的动作,可由用户根据自己的需要进行定义。当我们卸下翻页滚轮之后,可以看到滚轮位置上,“藏”有一对光电“发射/接收”装置。“滚轮”上带有栅格,由于栅格能够间隔的“阻断”这对光电“发射/接收”装置的光路,这样便能产生翻页脉冲信号,此脉冲信号经过控制芯片传送给Windows操作系统,便可以产生翻页动作了。除了以上这些,光电鼠标还包括些什么呢?它还包括连接线、PS/2或USB接口、外壳等。由于这几个部分与机械式鼠标没有多大分别,因此,这里就不再说明了。继续来介绍几个光学鼠标的重要技术参数: CPI:光学引擎的成像原理其实就是显微照像,其CPI水平就相当于照相细节的放大清晰度。显然这个放大清晰度和照片的尺寸是没有关系的,它只取决于光学组件的放大率,也就是说即便你把COMS换成原来的一半大小,也只会使采样的影象变得更小,但是细节和清晰度不会改变。 ?分辨率通常使用DPI(每英吋点数,dots per inch)来表示,可以测量出鼠标的精准度。实际上采用Agilent Technologies原本的CPI(每英吋测量次数,count per inch)说法可能正确的多。大部份市面上的光学鼠都是400 CPI的,也就是说它们每移动一英吋就传回400次坐标。采样率:这是光学鼠标独有的技术参数,它代表CMOS传感器每秒种对采样表面“拍摄”的次数和DSP芯片每秒相应的处理能力。早期的光学鼠标在高速运动的时候,存在着严重的丢帧问题。为什么会出现这种问题呢?因为在鼠标高速移动的时候,很可能会出现CMOS传感器相邻两次拍摄的图象中没有任何相同采样点的情况。没有共同的采样点,也就无从比较移动方向,这样造成DSP芯片无法正常处理,从而产生大量错误信号。再说鼠标垫: ??鼠标垫的好处就是希望能够借助额外的工具给鼠标一个纯净,平滑的移动摩擦表面,以有效的避免实际使用过程中复杂的移动表面给自己带来坏心情,例如在现在相当流行的组队式 FPS 游戏 CS 中,想想自己不是因为技术,而是因为在移动过程中碰到了桌面的一个小小的突起,而让玩家的准星没有及时赶到目标位置被爆头,是不是会让你气急败坏呢。鼠标垫对于发烧级的 FPS 之类的游戏玩家而言,在移动平和度,手感上都可能会对鼠标的移动定位表现有所帮助。发烧级的玩家总希望能够在现有的条件下,借助部分工具提升自己的实际水准,制作出色的鼠标垫自然成为这部分玩家的目标啦。 ???现在的鼠标产品虽然完成了从机械到光电的转变,但是依旧离开不了移动,只不过被关注的重点从滚球转到了脚垫上来了。虽然厂商在鼠标从设计之初就考虑到了很多方面,但是由于使用者之间的习惯差异,鼠标垫仍旧有其存在的实际意义。看看现在的鼠标垫产品市场,各种材质的产品都很丰富,而且由于好的鼠标垫都做过特殊处理,在表面均匀度和粗糙度方面都很等称,不会出现高速度移动和高精度定位等情况下的异常阻碍等现象,但也不是拿个鼠标垫就能用的,可能有的用户比较喜欢柔软一些的,而有的用户则更喜欢粗糙一些的。那现在市场上到底有多少种比较常见的鼠标垫呢?

校园网——收录全国各地学校网站。
网站简介 | 联系方式 | 网站地图 CopyRight 2014-2023 www.15033.cn, Inc. All Rights Reserved icp备案号 闽ICP备2023005518号